Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 070507    DOI: 10.1088/1674-1056/22/7/070507
GENERAL Prev   Next  

Time-dependent Ginzburg–Landau equation for lattice hydrodynamic model describing pedestrian flow

Ge Hong-Xia (葛红霞)a, Cheng Rong-Jun (程荣军)b, Lo Siu-Ming (卢兆明)c
a Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China;
b Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China;
c Department of Civil and Architectural Engineering, City University of Hong Kong, Hong Kong, China
Abstract  A thermodynamic theory is formulated to describe the phase transition and critical phenomena in pedestrian flow. Based on the extended lattice hydrodynamic pedestrian model taking the interaction of the next-nearest-neighbor persons into account, the time-dependent Ginzburg-Landau (TDGL) equation is derived to describe the pedestrian flow near the critical point through the nonlinear analysis method. And the corresponding two solutions, the uniform and the kink solutions, are given. The coexisting curve, spinodal line, and critical point are obtained by the first and second derivatives of the thermodynamic potential.
Keywords:  pedestrian flow      lattice hydrodynamic model      time-dependent Ginzburg-Landau equation  
Received:  10 September 2012      Revised:  12 January 2013      Accepted manuscript online: 
PACS:  05.70.Fh (Phase transitions: general studies)  
  89.40.+k  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072117 and 61074142), the Natural Science Foundation of ZheJiang Province, China (Grant No. Y6110007), the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Z201119278), the Natural Science Foundation of Ningbo, China (Grant Nos. 2012A610152 and 2012A610038), the K. C. Wong Magna Fund in Ningbo University, China, and the Research Grant Council, Government of the Hong Kong Administrative Region, China (Grant Nos. CityU9041370 and CityU9041499).
Corresponding Authors:  Ge Hong-Xia     E-mail:  gehongxia@nbu.edu.cn

Cite this article: 

Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军), Lo Siu-Ming (卢兆明) Time-dependent Ginzburg–Landau equation for lattice hydrodynamic model describing pedestrian flow 2013 Chin. Phys. B 22 070507

[1] Muramatsu M, Irie T and Nagatani T 1999 Physica A 267 487
[2] Li X, Duan X Y and Dong L Y 2012 Chin. Phys. B 21 108901
[3] Li X and Dong L Y 2012 Chin. Phys. Lett. 29 098902
[4] Chen R, Li X and Dong L Y 2012 Acta Phys. Sin. 61 144502 (in Chinese)
[5] Helbing D and Molnár P 1995 Phys. Rev. E 51 4282
[6] Hughes R L 2002 Transp. Res. B 36 507
[7] Coscia V and Canavesio C 2008 Math. Models Methods Appl. Sci. 18 1217
[8] Nagatani T 1998 Physica A 261 599
[9] Nagatani T 1999 Physica A 264 581
[10] Nagatani T 1999 Phys. Rev. E 59 4857
[11] Tian H H, He H D, Wei Y F, Xue Y and Lu W Z 2009 Physica A 388 2895
[12] Xue Y, Tian H H, He H D, Lu W Z and Wei Y F 2009 Eur. Phys. J. B 69 289
[13] Wen J, Tian H H and Xue Y 2010 Acta Phys. Sin. 59 3817 (in Chinese)
[1] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[2] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[3] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[4] Influence of bottleneck on single-file pedestrian flow: Findings from two experiments
Cheng-Jie Jin(金诚杰), Rui Jiang(姜锐), Da-Wei Li(李大韦). Chin. Phys. B, 2020, 29(8): 088902.
[5] Model and application of bidirectional pedestrian flows at signalized crosswalks
Tao Zhang(张涛), Gang Ren(任刚), Zhi-Gang Yu(俞志钢), Yang Yang(杨阳). Chin. Phys. B, 2018, 27(7): 078901.
[6] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[7] Analysis of dynamic features in intersecting pedestrian flows
Hai-Rong Dong(董海荣), Qi Meng(孟琦), Xiu-Ming Yao(姚秀明), Xiao-Xia Yang(杨晓霞), Qian-Ling Wang(王千龄). Chin. Phys. B, 2017, 26(9): 098902.
[8] Bottleneck effects on the bidirectional crowd dynamics
Xiao-Xia Yang(杨晓霞), Hai-Rong Dong(董海荣), Xiu-Ming Yao(姚秀明), Xu-Bin Sun(孙绪彬). Chin. Phys. B, 2016, 25(12): 128901.
[9] Study on bi-directional pedestrian movement using ant algorithms
Sibel Gokce, Ozhan Kayacan. Chin. Phys. B, 2016, 25(1): 010508.
[10] The Korteweg-de Vires equation for the bidirectional pedestrian flow model considering the next-nearest-neighbor effect
Xu Li (徐立), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(12): 120508.
[11] A lattice hydrodynamical model considering turning capability
Tian Huan-Huan(田欢欢) and Xue Yu(薛郁) . Chin. Phys. B, 2012, 21(7): 070505.
[12] Flow difference effect in the two-lane lattice hydrodynamic model
Wang Tao(王涛), Gao Zi-You(高自友), Zhao Xiao-Mei(赵小梅), Tian Jun-Fang(田钧方), and Zhang Wen-Yi(张文义) . Chin. Phys. B, 2012, 21(7): 070507.
[13] Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect
Zhao Min(赵敏), Sun Di-Hua(孙棣华), and Tian Chuan(田川) . Chin. Phys. B, 2012, 21(4): 048901.
[14] Multiple flux difference effect in the lattice hydrodynamic model
Wang Tao(王涛), Gao Zi-You(高自友), and Zhao Xiao-Mei(赵小梅) . Chin. Phys. B, 2012, 21(2): 020512.
[15] A new lattice hydrodynamic traffic flow model with a consideration of multi-anticipation effect
Tian Chuan(田川), Sun Di-Hua(孙棣华), and Yang Shu-Hong(阳树洪). Chin. Phys. B, 2011, 20(8): 088902.
No Suggested Reading articles found!