Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057301    DOI: 10.1088/1674-1056/22/5/057301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of a bar on optical transmission through Z-shaped metallic slit arrays

Wu Cai-Ni (吴彩妮)a, Li Hong-Jian (李宏建)a b, Peng Xiao (彭校)a, Cao Guang-Tao (曹广涛)b, Liu Zhi-Min (刘志敏)a
a College of Physics and Electronics, Central South University, Changsha 410083, China;
b College of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  We investigate the effects of a bar on optical transmission through Z-shaped metallic slit arrays by using finite-difference time domain (FDTD) method. A new hybrid Fabry-Perot (FP) surface plasmon polariton (SPP) mode emerges when changing the geometric parameters of the bar, and this mode can be viewed as a coupling between FP mode and SPP mode. In addition, an obvious dip appears in a featured area when the bar deviates from the central line, and a small displacement of the bar leads to tremendous change of the dip. These behaviors can be attributed to the phase resonance. In short, the structure is very sensitive to the metal bar. Furthermore, it combines photonic device miniaturization with sensitivity, which is useful for making optical switch.
Keywords:  surface plasmon resonance      transmission      Z-shaped metallic slit arrays  
Received:  10 August 2012      Revised:  08 November 2012      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.68.+m (Optical properties of surfaces)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
Fund: Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100162110068) and the National Natural Science Foundations of China (Grant Nos. 61275174 and 11164007).
Corresponding Authors:  Li Hong-Jian     E-mail:  lihj398@yahoo.com.cn

Cite this article: 

Wu Cai-Ni (吴彩妮), Li Hong-Jian (李宏建), Peng Xiao (彭校), Cao Guang-Tao (曹广涛), Liu Zhi-Min (刘志敏) Effects of a bar on optical transmission through Z-shaped metallic slit arrays 2013 Chin. Phys. B 22 057301

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Cao Q and Lalanne P 2002 Phys. Rev. Lett. 88 057403
[3] Gay G, Alloschery O, Viaris de Lesegno B, Weiner J and Lezec H J 2006 Phys. Rev. Lett. 96 213901
[4] Medina F, Ruiz-Cruz J A, Mesa F, Rebollar J M, Montejo-Garai J R and Marqués R 2009 Appl. Phys. Lett. 95 071102
[5] Wang J F, Li H J, Zhou Z Y, Li X Y, Liu J and Yang H Y 2010 Chin. Phys. B 19 117310
[6] Jiao X, Wang P, Tang L, Lu Y, Li Q, Zhang D, Yao P, Ming H and Xie J 2005 Appl. Phys. B 80 301
[7] Takakura Y 2001 Phys. Rev. Lett. 86 5601
[8] Hibbins A P, Lockyear M J and Sambles J R 2006 J. Appl. Phys. 99 124903
[9] Guillaumee M, Andrea Dunbar L and Satanley R P 2011 Opt. Express 19 4740
[10] Lezec H J and Thio T 2004 Opt. Express 12 3629
[11] Porto J A, García-Vidal F G and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[12] Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z and Yang H F 2006 Chin. Phys. Lett. 23 486
[13] Kihm J E, YoonY C, Park D J, Ahn Y H, Ropers C, Lienau C, Kim J, Park Q H and Kim D S 2007 Phys. Rev. B 75 035414
[14] Wang X D, Ye L H, Ma J and Jiang M P 2010 Chin. Phys. Lett. 27 094101
[15] Gordon R 2007 Phys. Rev. B 75 193401
[16] Fu S L, Li H J, Xie S X, Zhou X, Xu H Q and Xia H 2011 Chin. Phys. B 20 087302
[17] Yu X Q, Zhou L, Zhu Y Y and Zhu S L 2008 Chin. Phys. Lett. 25 274
[18] Hu B, Gu B Y, Dong B Z and Zhang Y 2008 Appl. Phys. Lett. 92 151901
[19] Xie S X, Li H J, Zhou X, Xu H Q and Liu Z M 2011 J. Opt. Soc. Am. A 28 441
[20] Taflove A and Hagness S C 2005 Computational Electrodynamics: the Finite-Difference Time-Domain Method (2nd edn.) (Boston: Artech House)
[21] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[22] Berenger J P 1994 J. Comput. Phys. 114 185
[23] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W and Ward C A 1983 Appl. Opt. 22 1099
[24] Hibbins A P, Lockyear M J and Sambles J R 2005 Appl. Phys. Lett. 87 263116
[25] Wang Y, Wang Y, Zhang Y and Liu S 2009 Opt. Express 17 5014
[26] He M D, Gong Z Q, Li S, Luo Y F, Liu J Q and Chen X S 2010 Solid State Commun. 150 1283
[27] Kihm J E, Yoon Y C, Park D J, Ahn Y H, Ropers C, Lienau C, Kim J, Park Q H and Kim D S 2007 Phys. Rev. B 75 035414
[28] Marquier F, Greffet J J, Collin S, Pardo F and Pelouard J L 2005 Opt. Express 13 70
[29] Liu Z F and Jin G J 2009 J. Phys: Condens. Matter 21 445401
[30] Liu Z M, Li H J and Xie S X 2011 Opt. Express 19 4217
[31] Han Z H and Bozhevolnyi S I 2011 Opt. Express 19 3251
[32] Srituravanich W, Pan L, Wang Y, Sun C, Bogy D B and Zhang X 2008 Nature Nanotechnol. 3 733
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[6] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[7] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[8] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[9] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[10] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[11] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[12] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[13] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[14] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[15] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
No Suggested Reading articles found!