Abstract The time-dependent multilevel approach (TDMA) and B-spline expansion technique are used to study the coherent population transfer between the quantum states of potassium atom by a single frequency-chirped microwave pulse. The Rydberg potassium atom energy levels of n=6-15, l=0-5 states in zero field are calculated and the results are in good agreement with other theoretical values. The time evolutions of the population transfer of the six states from n=70 to n=75 in different microwave fields are obtained. The results show that the coherent control of the population transfer from the lower states to the higher ones can be accomplished by optimizing the microwave pulse parameters.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774039); the Natural Science Foundation of Education Bureau of Henan Province, China (Grant Nos. 2010C140002 and 2010A140006); and the Research Planning Project of Basic and Advanced Technology of Henan Province, China (Grant No. 112300410025).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.