CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of wave propagation anisotropy on the wave focusing by negative refractive sonic crystal flat lenses |
S. Alagoz |
Department of Physics, Inonu University, Center Campus, Turkey |
|
|
Abstract In this study, wave propagation anisotropy in a triangular lattice crystal structure and its associated waveform shaping in a crystal structure are investigated theoretically. A directional variation in wave velocity inside a crystal structure is shown to cause bending wave envelopes. The authors report that a triangular lattice sonic crystal possesses six numbers of a high symmetry direction, which leads to a wave convergence caused by wave velocity anisotropy inside the crystal. However, two of them are utilized mostly in wave focusing by an acoustic flat lens. Based on wave velocity anisotropy, the pseudo ideal imagining effect obtained in the second band of the flat lens is discussed.
|
Received: 19 April 2012
Revised: 15 May 2012
Accepted manuscript online:
|
PACS:
|
62.65.+k
|
(Acoustical properties of solids)
|
|
43.20.El
|
(Reflection, refraction, diffraction of acoustic waves)
|
|
43.35.Cg
|
(Ultrasonic velocity, dispersion, scattering, diffraction, and Attenuation in solids; elastic constants)
|
|
Corresponding Authors:
S. Alagoz
E-mail: serkan.alagoz@inonu.edu.tr
|
Cite this article:
S. Alagoz Effects of wave propagation anisotropy on the wave focusing by negative refractive sonic crystal flat lenses 2012 Chin. Phys. B 21 126202
|
[1] |
Cervera F, Sanchis L, Sanchez-Perez J V, Martinez-Sala R, Rubio C, Meseguer F, Lopez C, Caballero D and Sanchez-Dehesa J 2001 Phys. Rev. Lett. 88 023902
|
[2] |
Chao-Hsien K and Zhen Y 2004 J. Phys. D: Appl. Phys. 37 2155
|
[3] |
Alagoz S 2011 Meas. Sci. Technol. 22 115105
|
[4] |
Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
|
[5] |
Yang W P, Wu L Y and Chen L W 2008 J. Phys. D: Appl. Phys. 41 135408
|
[6] |
Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 02430
|
[7] |
Sukhovich A, Li J and Page J H 2008 Phys. Rev. Lett. B 77 014301
|
[8] |
Qiu C, Zhang X and Liu Z 2005 Phys Rev. B 71 054302
|
[9] |
Yang S, Page J H, Liu Z, Cowan M L, Chan CT and Sheng P 2004 Phys. Rev. Lett. 93 0243301
|
[10] |
Feng Z F, Wang X G, Li Z Y and Zhang D Z 2008 Chin. Phys. B 17 1101
|
[11] |
Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2002 Phys. Rev. B 65 201104
|
[12] |
Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J and Zhu Y Y 2005 Phys. Rev. B 72 033108
|
[13] |
Feng L, Liu X P, Lu M H, Chen Y B, Chen Y F, Mao Y W, Zi J, Zhu Y Y, Zhu S N and Ming N B 2006 Phys. Rev. Lett. 96 014301
|
[14] |
Mackay T G and Lakhtakia A 2009 Phys. Rev. B 79 235121
|
[15] |
Veselago V, Braginsky L, Shklover V and Hafner C 2006 J. Comput. Theor. Nanoscience 3 1
|
[16] |
Zhao H G, Wen J H, Liu Y Z, Yu D L, Wang G and Wen X S 2008 Chin. Phys. B 17 1305
|
[17] |
Cai C, Zhu X F, Chen Q, Yuan Y, Liang B and Cheng J C 2011 Chin. Phys. B 20 116301
|
[18] |
Wu L Y and Chen L W 2011 J. Phys. D: Appl. Phys. 44 045402
|
[19] |
Miyashita T 2005 Meas. Sci. Technol. 16 47
|
[20] |
Frandsen L H, Lavrinenko A V, Fage-Pedersen J and Borel P I 2006 Opt. Express 14 9444
|
[21] |
Cicek A, Kaya O A and Ulug B 2011 J. Phys. D: Appl. Phys. 44 205104
|
[22] |
Feng L, Liu X P, Chen Y B, Huang Z P, Mao Y W, Chen Y F, Zi J and Zhu Y Y 2005 Phys. Rev. B 72 033108
|
[23] |
Perez-Arjona I, Sanchez-Morcillo V J, Redondo J, Espinosa V and Staliunas K 2007 Phys. Rev. B 75 014304
|
[24] |
Robillard J F, Bucay J, Deymier P A, Shelke A, Muralidharan K, Merheb B, Vasseur J O, Sukhovich A and Page J H 2011 Phys. Rev. B 83 224301
|
[25] |
Luo C, Johnson S G, Joannopoulos J D and Pendry J B 2003 Phys. Rev. B 68 045115
|
[26] |
Alagoz S and Alagoz B B 2009 Appl. Acoustics 70 1400
|
[27] |
Moussa R, Foteinopoulou S, Zhang L, Tuttle G, Guven K, Ozbay E and Soukoulis C M 2005 Phys Rev. B 71 085106
|
[28] |
Torrent D and Sánchez-Dehesa 2007 New J. Phys. 9 323
|
[29] |
Lin S C S, Huang T J, Sun J H and Wu T T 2009 Phys. Rev. B 79 094302
|
[30] |
Wu T T, Chen Y T, Sun J H, Steven Lin S C and Huang T J 2011 Appl. Phys. Lett. 98 171911
|
[31] |
He Z, Cai F, Ding Y and Liu Z 2008 Appl. Phys. Lett. 93 233503
|
[32] |
Economou E N and Sigalas M M 1993 Phys. Rev. B 48 13434
|
[33] |
Sigalas M M 1998 J. Appl. Phys. 84 3026
|
[34] |
Swinteck N, Robillard J F, Bringuier S, Bucay J, Muralidharan K, Vasseur J O, Runge K and Deymier P A 2011 Appl. Phys. Lett. 98 103508
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|