Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 113602    DOI: 10.1088/1674-1056/21/11/113602
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Computer simulation study of the cluster destruction of stratospheric ozone by bromine

A. E. Galashev, O. R. Rakhmanova
Institute of Industrial Ecology, Ural Branch, Russian Academy of Sciences 620990, S. Kovalevskaya Str., 20, Yekaterinburg, Russia
Abstract  The interaction of (Br-)i(H2O)50-i, 0 ≤ i ≤ 6 clusters with oxygen and ozone molecules is investigated by the method of molecular dynamics simulation. The ozone molecules as well as the bromine ions do not leave the cluster during the calculation of 25 ps. The ability of the cluster containing molecular oxygen to absorb the infrared (IR) radiation is reduced in the frequency range of 0 ≤ ω ≤ 3500 cm-1 when the number of the bromine ions in the cluster grows. The intensity of the Raman spectrum is not changed significantly when the Br- ions are added to the ozone-containing system. The power of the emitted IR radiation is increased when the number of the bromine ions grows in the oxygen-containing system. The data obtained in this study on the IR and the Raman spectra of the water clusters that contain ozone, oxygen, and Br- can be used to develop an investigation of the mechanisms of ozone depletion.
Keywords:  bromine ion      water cluster      ozone      infrared and Raman spectra  
Received:  12 May 2012      Accepted manuscript online: 
PACS:  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
  92.70.Cp (Atmosphere)  
  92.70.Er (Biogeochemical processes)  
Fund: Project supported by the Russian Foundation of Basic Research (Grant No. 08-08-00136-a).
Corresponding Authors:  A. E. Galashev     E-mail:  galashev@ecko.uran.ru

Cite this article: 

A. E. Galashev, O. R. Rakhmanova Computer simulation study of the cluster destruction of stratospheric ozone by bromine 2012 Chin. Phys. B 21 113602

[1] Sinnhuber B M, Sheode N, Sinnhuber M, Chipperfild M P and Feng W 2006 Atmos. Chem. Phys. Discuss 6 6497
[2] Shibata S, Ohdan H, Noriyuki T, Yoshioka S, Asahara T and Dohi K 1999 Am. J. Respir. Crit. Care Med. 160 317
[3] Kim H W, Shen T J, Sun D P, Ho N T, Madrid M and Ho C 1995 J. Mol. Biol. 248 867
[4] Puius Y A, Zou M, Ho N T, Ho C and Almo S C 1998 Biochemistry 37 9258
[5] Kim H W, Lee C H, Jung S and Won Y 2001 Bull. Korean Chem. Soc. 22 253
[6] Dang L X and Chang T M 1997 J. Chem. Phys. 106 8149
[7] Benedict W S, Gailar N and Plyler E K 1956 J. Chem. Phys. 24 1139
[8] Nikolskiiy B P 1971 The Chemists Book (Leningrad: Himiya) p. 204
[9] Galashev A E, Rakhmanova O R and Chukanov V N 2005 Rus. J. Chem. Phys. B 24 90
[10] Spackman M A 1986 J. Chem. Phys. 85 6579
[11] Spackman M A 1986 J. Chem. Phys. 85 6587
[12] Perera L and Berkowitz M L 1991 J. Chem. Phys. 95 1954
[13] Lemberg H L and Stillinger F H 1975 J. Chem. Phys. 62 1677
[14] Rahman A, Stillinger F H and Lemberg H L 1975 J. Chem. Phys. 63 5223
[15] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[16] Bartell L S 1997 J. Phys. Chem. 101 7573
[17] Vostrikov A A, Dyubov D Y and Drozdov S V 2008 Letters to JTP 34 87
[18] Hunt S W 2004 J. Phys. Chem. A 108 11559
[19] Skripov V P and Koverda V P 1984 Spontaneous Crystallization of Supercooled Liquids (Moscow: Nauka) p. 230
[20] Haile J M 1992 Molecular Dynamics Simulation Elementary Methods (New York: Wiley) p. 490
[21] Koshlaykov V N 1985 Problems of Solid Body Dynamics and Applied Theory of Gyroscopes (Moscow: Nauka) p. 286
[22] Sonnenschein R J 1985 Comp. Phys. 59 347
[23] Landau L D and Lifshitz E M 1982 Electrodynamics of Continuous Media (Moscow: Nauka) p. 620
[24] Prokhorov A M 1988 Physical Encyclopedia (Moscow: Sovetskaya Entciklopediya) p. 702
[25] Bosma W B, Fried L E and Mukamel S J 1993 Chem. Phys. 98 4413
[26] Huiszoon C 1986 Mol. Phys. 58 865
[27] Marcus Y 1987 Pure Appl. Chem. 59 1093
[28] Komarov V V and Tang J 2004 Microw. Opt. Tech. Lett. 42 419
[29] Komarov V V, Wang S and Tang J 2005 Encyclopedia RF Microwave Engineering (New York: Wiley) p. 3693
[30] Neumann M 1986 J. Chem. Phys. 85 1567
[31] Angell C A and Rodgers V 1984 J. Chem. Phys. 80 6245
[32] Robichaud D J, Hodges J T, Brown L R, Lisak D, Maslowski P, Yeung L Y, Okumura M and Miller C E 2008 J. Mol. Spectrosc. 248 1
[33] Kozintzev V I, Belov M L, Gorodnichev V A and Fedotov U V 2003 Laser Optical Acoustic Analysis of Multicomponent Gas Mixtures (Moscow: MSTU named N.E. Bauman) p. 352
[34] Goggin P L and Carr C 1986 Water and Aqueous Solutions (Boston: Adam Hilger) p. 149
[35] Upschulte B L, Green B D, Blumberg W A and Lipson S J 1994 J. Phys. Chem. 98 2328
[36] Vallee P, Lafait J, Ghomi M, Jouanne M and Morhange J F 2003 J. Molec. Struct. 651-653 371
[37] Andrews L and Spiker R C 1972 J. Phys. Chem. 76 3208
[38] Goldschleger I U, Kerenskaya G, Janda K C and Apkarian V A 2008 J. Phys. Chem. A 112 787
[39] Galashev A E, Rakhmanova O R, Novruzova O A and Galasheva A A 2009 Colloid Journal 71 734
[40] Galashev A E and Rakhmanova O R 2011 Rus. J. Phys. Chem. B 5 197
[1] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[2] Improvement of the high-κ/Ge interface thermal stability using an in-situ ozone treatment characterized by conductive atomic force microscopy
Ji-Bin Fan(樊继斌), Xiao-Jiao Cheng(程晓姣), Hong-Xia Liu(刘红侠), Shu-Long Wang(王树龙), Li Duan(段理). Chin. Phys. B, 2017, 26(8): 087701.
[3] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
[4] Characteristics of Nb/Al superconducting tunnel junctions fabricated using ozone gas
Masahiro Ukibe, Go Fujii, Masataka Ohkubo. Chin. Phys. B, 2015, 24(9): 093301.
[5] Modeling the interaction of nitrate anions with ozone and atmospheric moisture
A. Y. Galashev. Chin. Phys. B, 2015, 24(10): 103601.
[6] UV-ozone-treated MoO3 as the hole-collecting buffer layer for high-efficiency solution-processed SQ:PC71BM photovoltaic devices
Yang Qian-Qian (杨倩倩), Yang Dao-Bin (杨道宾), Zhao Su-Ling (赵谡玲), Huang Yan (黄艳), Xu Zheng (徐征), Gong Wei (龚伟), Fan Xing (樊星), Liu Zhi-Fang (刘志方), Huang Qing-Yu (黄清雨), Xu Xu-Rong (徐叙瑢). Chin. Phys. B, 2014, 23(3): 038405.
[7] Vibrational properties of cagelike diamondoid nitrogen at high pressure
Wang Hui (王翚). Chin. Phys. B, 2013, 22(8): 086301.
[8] Computer study of the water–ammonia clusters formation and their dielectric properties
Alexander Galashev. Chin. Phys. B, 2013, 22(7): 073601.
[9] Equivalent oxide thickness scaling of Al2O3/Ge metal-oxide-semiconductor capacitors with ozone post oxidation
Sun Jia-Bao (孙家宝), Yang Zhou-Wei (杨周伟), Geng Yang (耿阳), Lu Hong-Liang (卢红亮), Wu Wang-Ran (吴汪然), Ye Xiang-Dong (叶向东), David Zhang Wei (张卫), Shi Yi (施毅), Zhao Yi (赵毅). Chin. Phys. B, 2013, 22(6): 067701.
[10] Computer study of the spectral characteristics of the disperse water–methane system
A. Y. Galashev. Chin. Phys. B, 2013, 22(12): 123602.
[11] Density functional study on chirospectra of hydrogen-bonded systems X-(H2O) 3 (X = F,Cl,Br,I)
Mang Chao-Yong(莽朝永),Li Zhen-Gui(李珍贵), and Wu Ke-Chen(吴克琛). Chin. Phys. B, 2010, 19(4): 043601.
[12] Potential energy surfaces of ozone in the ground state
Shao Ju-Xiang(邵菊香), Zhu Zheng-He(朱正和), Huang Duo-Hui(黄多辉) Wang Jun(王君), Cheng Xin-Lu(程新路), and Yang Xiang-Dong(杨向东). Chin. Phys. B, 2007, 16(9): 2650-2655.
[13] Fluorescence spectrum characteristic of ethanol--water excimer and mechanism of resonance energy transfer
Liu Ying(刘莹), Song Chun-Yuan(宋春元), Luo Xiao-Sen(骆晓森), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Chin. Phys. B, 2007, 16(5): 1300-1306.
No Suggested Reading articles found!