Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 110508    DOI: 10.1088/1674-1056/21/11/110508
GENERAL Prev   Next  

Leader–following consensus criteria for multi-agent systems with time-varying delays and switching interconnection topologies

M. J. Parka, O. M. Kwona, Ju H. Parkb, S. M. Leec, E. J. Chad
a School of Electrical Engineering, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea;
b Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea;
c School of Electronic Engineering, Daegu University, Gyungsan 712-714, Republic of Korea;
d Department of Biomedical Engineering, School of Medicine, Chungbuk National University, 52 Naesudong-ro, Heungduk-gu, Cheongju 361-763, Republic of Korea
Abstract  We consider multi-agent systems with time-varying delays and switching interconnection topologies. By constructing a suitable Lyapunov-Krasovskii functional and using the reciprocally convex approach, new delay-dependent consensus criteria for the systems are established in terms of linear matrix inequalities (LMIs), which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed methods.
Keywords:  consensus      multi-agent systems      time delay      Lyapunov method  
Received:  01 May 2012      Revised:  23 June 2012      Accepted manuscript online: 
PACS:  05.65.+b (Self-organized systems)  
  02.10.Yn (Matrix theory)  
Fund: Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), the Ministry of Education, Science and Technology, Korean (Grant Nos. 2012-0000479 and 2011-0009273), and the Korea Healthcare Technology R & D Project, Ministry of Health & Welfare, Republic of Korea (Grant No. A100054).
Corresponding Authors:  O. M. Kwon     E-mail:  madwind@chungbuk.ac.kr

Cite this article: 

M. J. Park, O. M. Kwon, Ju H. Park, S. M. Lee, E. J. Cha Leader–following consensus criteria for multi-agent systems with time-varying delays and switching interconnection topologies 2012 Chin. Phys. B 21 110508

[1] Olfati-Saber R, Fax J A and Murray R M 2007 Proc. IEEE 95 215
[2] Ren W and Beard R W 2005 IEEE Tran. Autom. Control 50 655
[3] Wang J, Cheng D and Hu X 2008 Asian J. Control 10 144
[4] Yang T, Jin Y H, Wang W and Shi Y J 2011 Chin. Phys. B 20 020511
[5] Song H Y, Yu L, Hu H X and Zhang W A 2012 Chin. Phys. B 21 028901
[6] Zhang W G, Zeng D L and Guo Z K 2010 Chin. Phys. B 19 070518
[7] Ren W 2007 IET Control Theory Appl. 1 505
[8] Wu Q, Liu W, Yang Y, Zhao C and Li Y 2006 Int. Conf. on Power System Technology (PowerCon 2006), October 22-26, 2006 Chongqing, China, pp. 1-5
[9] DeLellis P, di Bernardo M, Garofalo F and Liuzza D 2010 Appl. Math. Comput. 217 988
[10] Xu S and Lam J 2008 Int. J. Syst. Sci. 39 1095
[11] Hong Y, Gao L, Cheng D and Hu J 2007 IEEE Tran. Autom. Control 52 943
[12] Liu C L and Liu F 2010 Proceedings of 2010 Chinese Control and Decision Conference, Xuzhou, China, May 26-28, pp. 739-744
[13] Xiao F and Wang L 2006 Int. J. Control 79 1277
[14] Hu J P and Hong Y G 2007 Physica A 374 853
[15] Tian Y P and Liu C L 2008 IEEE Tran. Autom. Control 53 2122
[16] Qin J, Gao H and Zheng W X 2011 Int. J. Syst. Sci. 42 1947
[17] Park P and Ko J W 2011 Automatica 47 235
[18] Boyd S, El Ghaoui L, Feron E and Balakrishnan V 1994 Linear Matrix Inequalities in System and Control Theory (Philadelphia: SIAM)
[19] Ariba Y and Gouaisbaut F 2009 Int. J. Control 82 1616
[20] Rakkiyappan R, Balasubramaniam P and Krishnasamy R 2011 J. Comput. Appl. Math. 235 2147
[21] Godsil C and Royle G F 2001 Algebraic Graph Theory (New York: Springer-Verlag)
[22] Gu K 2000 Proc. of the 39th IEEE Conf. on Decision and Control, Sydney, Australia, December 12-15, pp. 2805-2810
[23] de Oliveira M C and Skelton R E 2001 Stability Tests for Constrained Linear Systems (Berlin: Springer-Verlag), pp. 241-257
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
[4] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[5] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[6] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[7] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[8] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[9] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[10] Delayed excitatory self-feedback-induced negative responses of complex neuronal bursting patterns
Ben Cao(曹奔), Huaguang Gu(古华光), and Yuye Li(李玉叶). Chin. Phys. B, 2021, 30(5): 050502.
[11] Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay
Guoyuan Qi(齐国元) and Zimou Wang(王子谋). Chin. Phys. B, 2021, 30(12): 120516.
[12] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[13] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
[14] Enhanced vibrational resonance in a single neuron with chemical autapse for signal detection
Zhiwei He(何志威), Chenggui Yao(姚成贵), Jianwei Shuai(帅建伟), and Tadashi Nakano. Chin. Phys. B, 2020, 29(12): 128702.
[15] Design of passive filters for time-delay neural networks with quantized output
Jing Han(韩静), Zhi Zhang(章枝), Xuefeng Zhang(张学锋), and Jianping Zhou(周建平). Chin. Phys. B, 2020, 29(11): 110201.
No Suggested Reading articles found!