Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100701    DOI: 10.1088/1674-1056/21/10/100701
GENERAL Prev   Next  

Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique

Feng Yi-Fu (冯毅夫)a, Zhang Qing-Ling (张庆灵)b, Feng De-Zhi (冯德志)b
a School of Mathematics, Jilin Normal University, Siping 136000, China;
b Institute of Systems Science, Northeastern University, Shenyang 110004, China
Abstract  The global stability problem of Takagi-Sugeno (T-S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov-Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches.
Keywords:  Hopfield neural networks      linear matrix inequality      Takagi-Sugeno fuzzy model      homogeneous polynomially technique  
Received:  10 February 2012      Revised:  28 June 2012      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60974004) and the Natural Science Foundation of Jilin Province, China (Grant No. 201115222).
Corresponding Authors:  Feng Yi-Fu     E-mail:  yf19692004@163.com

Cite this article: 

Feng Yi-Fu (冯毅夫), Zhang Qing-Ling (张庆灵), Feng De-Zhi (冯德志) Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique 2012 Chin. Phys. B 21 100701

[1] Hopfied J J 1982 Proc. Natl. Acad. Sci. USA 79 2554
[2] Farrel J and Michel A 1990 IEEE Trans. Circuits Syst. 37 877
[3] Zhang W Y and Li J M 2011 Chin. Phys. B 20 030701
[4] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 3325
[5] Wang Z D, Liu Y, Fraser K and Liu X 2006 Phys. Lett. A 354 288
[6] Cui B T, Chen J and Lou X Y 2008 Chin. Phys. B 17 1670
[7] Ji Y and Cui B T 2010 Chin. Phys. B 19 060512
[8] Li D, Wang H, Yang D, Zhang X H and Wang S L 2008 Chin. Phys. B 17 4091
[9] Lee S M, Kwon O M and Park J H 2010 Chin. Phys. B 19 050507
[10] Kwon O M, Kwon J W and Kim S H 2011 Chin. Phys. B 20 050505
[11] Lakshmanan S and Balasubramaniam P 2011 Chin. Phys. B 20 040204
[12] Takagi T and Sugeno M 1985 IEEE Trans. Syst. Man, Cybernt. 15 116
[13] Wang L X and Mendel J M 1992 IEEE Trans. Neural Networks 3 807
[14] Gong D W, Zhang H G and Wang Z S 2012 Chin. Phys. B 21 030204
[15] Zhang H G and Xie X P 2011 IEEE Trans. Fuzzy Syst. 19 478
[16] Feng Y F and Zhang Q L 2010 Chin. Phys. B 19 120502
[17] Zhang H G, Xie X P and Tong S C 2011 IEEE Trans. Syst. Man, Cybernt. B 41 1313
[18] Huang H, Ho D W C and Lam J 2005 IEEE Trans. Circ. Syst. II: Exp. Briefs 52 251
[19] Lou X Y and Cui B T 2007 Fuzzy Sets and Systems 158 2746
[20] Ali M S and Balasubramaniam P 2009 Commun. Nonlinear Sci. Numer. Simul. 14 2776
[21] Li H Y, Chen B, Zhou Q and Qian W Y 2009 IEEE Trans. Syst. Man, Cybernt. B 39 94
[12] Balasubramaniam P, Vembarasan V and Rakkiyappan R 2011 Commun. Nonlinear Sci. Numer. Simul. 16 2109
[23] Li H Y, Chen B, Lin C and Zhou Q 2009 Neurocomputing 72 2017
[24] Ali M S 2011 Chin. Phys. B 20 080201
[25] Ali M S 2012 Chin. Phys. B 21 070207
[26] Oliveria R C L F and Peres P L D 2005 Linear Algebra and Its Applications 405 209
[27] Hardy G H, Littlewood J E and Polya G 1952 Inequalities 2nd edn. (Cambridge: Cambrodge University Press)
[28] Gu K Q 2000 Proceedings of the 39th IEEE Conference on Decision Control, December, 2000, Sydney, Australia, p. 2805
[29] de Oliveria M C and Skelton R E 2001 Prespective in Robust Control 268 241
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[3] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[4] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[5] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[6] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[7] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
[8] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan (王申全), Feng Jian (冯健), Zhao Qing (赵青). Chin. Phys. B, 2012, 21(12): 120701.
[9] Robust stabilization of state delayed discrete-time Takagi–Sugeno fuzzy systems with input saturation via anti-windup fuzzy design
Song Xiao-Na (宋晓娜), Fu Zhu-Mu (付主木), Liu Lei-Po (刘磊坡 ). Chin. Phys. B, 2012, 21(11): 118701.
[10] Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback
Wang Jun-Wei (王军威), Zeng Cai-Bin (曾才斌 ). Chin. Phys. B, 2012, 21(11): 110206.
[11] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali . Chin. Phys. B, 2011, 20(8): 080201.
[12] A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control
Wang Jun-Wei(王军威), Ma Qing-Hua(马庆华), and Zeng Li(曾丽) . Chin. Phys. B, 2011, 20(8): 080506.
[13] The $\mathscr{H}_{\infty}$ synchronization of nonlinear Bloch systems via dynamic feedback control approach
D.H. Ji, J.H. Koo, S.C. Won, and Ju H. Park. Chin. Phys. B, 2011, 20(7): 070502.
[14] Linear matrix inequality approach for robust stability analysis for stochastic neural networks with time-varying delay
S. Lakshmanan and P. Balasubramaniam. Chin. Phys. B, 2011, 20(4): 040204.
[15] New synchronization analysis for complex networks with variable delays
Zhang Hua-Guang(张化光), Gong Da-Wei(宫大为), and Wang Zhan-Shan(王占山) . Chin. Phys. B, 2011, 20(4): 040512.
No Suggested Reading articles found!