Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094219    DOI: 10.1088/1674-1056/21/9/094219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wavelength-selective characteristics of high birefringence photonic crystal fiber with Au nanowires selectively filled in the cladding air holes

Du Ying (杜颖), Li Shu-Guang (李曙光), Liu Shuo (刘硕)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  Filter characteristics of a designed gold-filled high birefringence photonic crystal fiber are investigated based on the finite element method. The wavelength filter resonances in the high birefringence photonic crystal fiber occur at different points for different polarized directions, and the resonance strength in the x-polarized case is much weaker than that in the y-polarized case. The much more obvious splitting filter characteristics and different resonance strength imply the study and application values in splitting and single polarization fiber devices. The simulation results show that increasing the number of the gold wires only enhances the resonance strength when there is no surface plasmon supermode formed. With the diameters of the gold wires increasing, the response wavelength moves to a longer wavelength, and the strength becomes stronger. When the diameter is increased to 1.4 μm, the response wavelength in the x-polarized case can be tuned to 1.318 μm, which is the communication wavelength. The strongest resonance occurs at 1.2375 μm in the y-polarized case, and the peaking loss can reach 435.83 dB/cm.
Keywords:  photonic crystal fiber      birefringence      surface plasmon  
Received:  13 January 2012      Revised:  26 February 2012      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.81.Gs (Birefringence, polarization)  
  71.45.Gm (Exchange, correlation, dielectric and magnetic response functions, plasmons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178026 and 60978028), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010), and the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035).
Corresponding Authors:  Li Shu-Guang     E-mail:  shuguangli@ysu.edu.cn

Cite this article: 

Du Ying (杜颖), Li Shu-Guang (李曙光), Liu Shuo (刘硕) Wavelength-selective characteristics of high birefringence photonic crystal fiber with Au nanowires selectively filled in the cladding air holes 2012 Chin. Phys. B 21 094219

[1] Xue W R, Guo Y N and Zhang W M 2010 Chin. Phys. B 19 017302
[2] Zhou X, Li H J, Xie S X, Fu S L, Xu H Q and Wu J J 2010 Chin. Phys. B 19 127806
[3] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[4] Lee H W 2008 Appl. Phys. Lett. 93 111102
[5] Piliarik M and Homola J I 2009 Opt. Express 17 16505
[6] Schmidt M A, Prill Sempere L N, Tyagi H K, Poulton C G and Russell P S J 2008 Phys. Rev. B 77 033417
[7] Tyagi H K, Schmidt M A, Prill Sempere L and Russell P S 2008 Opt. Express 16 17227
[8] Tyagi H K, Lee H W, Uebel P, Schmidt M A, Joly N, Scharrer M and Russell P S J 2010 Opt. Lett. 35 2573
[9] Lee H W, Schmidt M A, Russell R F, Joly N Y, Tyagi H K, Uebel P and Russell P S J 2011 Opt. Express 19 12180
[10] Yan F P, Wang L, Mao X Q, Gong T R, Liu P, Tao P L and Peng W J 2010 Opt. Commun. 283 3658
[11] Wang H L, Wang C, Leng Y X, Xu Z Z and Hou L T 2010 Chin. Phys. B 19 054212
[12] Yuan J H, Sang X Z, Yu C X, Xin X J, Li S G, Zhou G Y and Hou L T 2010 Chin. Phys. B 19 074218
[13] Nagasaki A, Saitoh K and Koshiba M 2011 Opt. Express 19 3799
[14] Agrawal G P 2001 Nonlinear Fibre Optics (3rd edn.) (San Diego: Academic Press) pp. 7, 8
[15] Poulton C G, Schmidt M A, Pearce G J, Kakarantzas G and Russell P S J 2007 Opt. Lett. 32 1647
[16] Vial A, Grimault A S, Macias D, Barchiesi D and de la Chapelle M L 2005 Phys. Rev. B 71 085416
[17] Schmidt M A and Russell P S 2008 Opt. Express 16 13617
[18] Chen M, Zhang Y and Yu R 2009 Chin. Opt. Lett. 7 390
[19] Sun X 2007 Opt. Lett. 32 2484
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[8] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[9] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[10] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[11] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[12] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[13] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
No Suggested Reading articles found!