Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094220    DOI: 10.1088/1674-1056/21/9/094220
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of radiation-induced mean wavelength shift in optical fibers on the scale factor of interferometric fiber optic gyroscope at a wavelength of 1300 nm

Jin Jing (金靖), Wang Xue-Qin (王学勤), Lin Song (林松), Song Ning-Fang (宋凝芳)
School of Instrument Science and Optic-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract  In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean transmission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers is tested by using a 60Co γ -radiation source. The observed different mean wavelength shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible range and total dose-dependent near infrared absorption bands. To evaluate the mean wavelength variation in fiber coil and the induced scale factor change for space-borne IFOG under low radiation dose in space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmitting in fibers will shift to shorter wavelength in low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOG.
Keywords:  space radiation      fiber optic gyroscope      scale factor      mean wavelength  
Received:  25 December 2011      Revised:  06 April 2012      Accepted manuscript online: 
PACS:  42.81.-i (Fiber optics)  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
  42.25.Hz (Interference)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61007040).
Corresponding Authors:  Jin Jing     E-mail:  jinjing@buaa.edu.cn

Cite this article: 

Jin Jing (金靖), Wang Xue-Qin (王学勤), Lin Song (林松), Song Ning-Fang (宋凝芳) Effect of radiation-induced mean wavelength shift in optical fibers on the scale factor of interferometric fiber optic gyroscope at a wavelength of 1300 nm 2012 Chin. Phys. B 21 094220

[1] Dollon M, Cros G, Sevellec A, Antoine P, Muller G, Willemenot E, Urgell A, Hardy G, Loret T, Faussot N, Cottreau Y and Gaiffe T 2002 Proceeding of the 5th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems October 22-25, 2002 Frascati, Italy, p. 41
[2] Jin J, Tian H T, Pan X and Song N F 2010 Chin. Phys. B 19 030701
[3] Jin J, Xu H J, Ma D Y, Lin S and Song N F 2012 Opt. Laser. Eng. 50 958
[4] Friebele E J, Gingerich M E, Brambani L A, Harrington C C and Hickey S J 1990 Proc. SPIE 1314 146
[5] Friebele E J and Wasserman L R 2006 18th International Optical Fiber Sensors Conference October 23-27, 2006 Cancacuteun, Mcuteexico, ME2
[6] Boucher R H, Woodward W F, Shima T S, Asman D J, Killian K M, Legrand J and Goellner G J 1996 Opt. Eng. 35 955
[7] Jin J, Wang X Q, Song N F and Zhang C X 2010 Sci. China. Tech. Sci. 53 3056
[8] Friebele E J, Askins C G, Miller G A, Peele J R and Wasserman L R 2004 Proc. SPIE 5554 120
[9] Cooke D W, Bennett B L and Farnum E H 1996 J. Nucl. Mater. 232 214
[10] Wijnands T, Kuhnhenn J, Hoeffgen S K and Weinand U 2008 IEEE Trans. Nucl. Sci. 55 2216
[11] Regnier E, Flammer I, Girard S, Gooijer F, Achten F and Kuyt G 2007 IEEE Trans. Nucl. Sci. 54 1115
[12] Morita Y and Kawakami W 1989 IEEE Trans. Nucl. Sci. 36 584
[13] Kyoto M, Chigusa Y, Ooe M, Watanabe M, Matubara T, Yamamoto T and Okamoto S 1989 J. Nucl. Sci. Technol. 26 507
[14] Lefévre H C 1996 Proc. SPIE 2837 1
[15] Gaiffe T, Simonpiétri P, Morisse J, Cerre N, Taufflieb E and Lefévre H C 1996 Proc. SPIE 2837 375
[16] Girard S, Keurinck J, Meunier J P, Meunier J P and Boukenter A 2004 J. Lightwave Technol. 22 1915
[17] Henschel H, Köhn O and Schmidt H U 1996 Proc. SPIE 2811 68
[1] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[2] Calibration of the superconducting gravimeter based on a cold atom absolute gravimeter at NIM
Qiyu Wang(王启宇), Jinyang Feng(冯金扬), Shaokai Wang(王少凯), Wei Zhuang(庄伟), Yang Zhao(赵阳), Lishuang Mou(牟丽爽), Shuqing Wu(吴书清). Chin. Phys. B, 2018, 27(12): 123701.
[3] Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application
Jing Jin(金靖), Ya Li(李亚), Zu-Chen Zhang(张祖琛), Chun-Xiao Wu(吴春晓), Ning-Fang Song(宋凝芳). Chin. Phys. B, 2016, 25(8): 084213.
[4] Estimation of random errors for lidar based on noise scale factor
Wang Huan-Xue (王欢雪), Liu Jian-Guo (刘建国), Zhang Tian-Shu (张天舒). Chin. Phys. B, 2015, 24(8): 084213.
[5] Radiation-induced attenuation self-compensating effect in super-fluorescent fiber source
Yang Yuan-Hong (杨远洪), Suo Xin-Xin (索鑫鑫), Yang Wei (杨巍). Chin. Phys. B, 2014, 23(9): 094213.
[6] Space radiation effect on fibre optical gyroscope control circuit and compensation algorithm
Zhang Chun-Xi(张春熹), Tian Hai-Ting(田海亭), Li Min(李敏), Jin Jing(金靖), and Song Ning-Fang(宋凝芳). Chin. Phys. B, 2008, 17(2): 573-577.
No Suggested Reading articles found!