Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 083201    DOI: 10.1088/1674-1056/21/8/083201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

On long-time limit behavior of the solution of atom's master equation

Chen Jun-Hua (陈俊华)a, Fan Hong-Yi (范洪义)a, Jiang Nian-Quan (姜年权 )b
a Department of Material Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
b School of Physical Science and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  We study long-time limit behavior of the solution of atom's master equation, for the first time we derive that the probability of the atom being in the α-th (α =j+1-jz, j is the angular momentum quantum number, jz is the z-component of angular momentum) state is {(1-K/G)/[1-(K/G)2j+1]}(K/G)α-1 as t→+∞, which coincides with the fact that when K/G > 1, the larger the α is, the larger probability of the atom being in the α-th state (the lower excited state). We also consider the case for some possible generalizations of the atomic master equation.
Keywords:  master equation      angular momentum      long-time limit behavior  
Received:  16 September 2011      Revised:  11 April 2012      Accepted manuscript online: 
PACS:  32.10.-f (Properties of atoms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11105133).
Corresponding Authors:  Chen Jun-Hua     E-mail:  cjh@ustc.edu.cn

Cite this article: 

Chen Jun-Hua (陈俊华), Fan Hong-Yi (范洪义), Jiang Nian-Quan (姜年权 ) On long-time limit behavior of the solution of atom's master equation 2012 Chin. Phys. B 21 083201

[1] See e.g., Walls D F and Milburn G J 1994 Quantum Optics (Berlin, Heidelberg: Springer-Verlag)
[2] Gardiner C W 1991 Quantum Noise (Berlin: Springer)
[3] Orszag M 2000 Quantum Optics (Berlin, Heidelberg: Springer-Verlag)
[4] Fan H Y, Ren G, Hu L Y and Jiang N Q 2010 Chin. Phys. B 19 114206
[5] Yang H F, Wang L, Liu X J and Liu H P 2011 Chin. Phys. B 20 063203
[6] Zhou B J, Liu Y M, Zhao M Z and Liu X J 2010 Chin. Phys. B 19 124207
[7] See review article, Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[8] Hassant S S, Hildredt G P, Puri R R and Bullought R K 1982 J. Phys. B: At. Mol. Phys. 15 2635
[9] Puri R R and Agarwal G S 1987 Phys. Rev. A 35 3433
[10] Briegel H J and Englert B G 1993 Phys. Rev. A 47 3311
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[3] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Shared aperture metasurface antenna for electromagnetic vortices generation with different topological charges
He Wang(王贺), Yong-Feng Li(李勇峰), and Shao-Bo Qu(屈绍波). Chin. Phys. B, 2021, 30(8): 084101.
[8] Local dynamical characteristics of Bessel beams upon reflection near the Brewster angle
Zhi-Wei Cui(崔志伟), Shen-Yan Guo(郭沈言), Yuan-Fei Hui(惠元飞), Ju Wang(王举), and Yi-Ping Han(韩一平). Chin. Phys. B, 2021, 30(4): 044201.
[9] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[10] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[11] Generation of a large orbital angular momentum beam via an optical fiber winding around a curved path and its application
Wei-Han Tan(谭维翰), Chao-Ying Zhao(赵超樱), Yi-Chao Meng(孟义朝), and Qi-Zhi Guo(郭奇志). Chin. Phys. B, 2021, 30(10): 104208.
[12] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
[13] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[14] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[15] Quantization of electromagnetic modes and angular momentum on plasmonic nanowires
Guodong Zhu(朱国栋), Yangzhe Guo(郭杨喆), Bin Dong(董斌), Yurui Fang(方蔚瑞). Chin. Phys. B, 2020, 29(8): 087301.
No Suggested Reading articles found!