Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064214    DOI: 10.1088/1674-1056/21/6/064214
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

The effect of a magnetic field on a 2D problem of fibre-reinforced thermoelasticity rotation under three theories

Kh. Lotfya)b)†
a. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, P. O. Box 44519, Egypt;
b. Department of Mathematics, Faculty of Science and Arts, Al-mithnab, Qassim University, P. O. Box 931, Buridah 51931, Al-mithnab, Kingdom of Saudi Arabia
Abstract  In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.
Keywords:  Lord-Schulman theory      Green-Lindsay theory      coupled theory      reinforcement      rotation      magnetic field  
Received:  26 November 2011      Revised:  26 November 2011      Accepted manuscript online: 
PACS:  42.65.Hf  
Corresponding Authors:  Kh. Lotfy     E-mail:  khlotfy_1@yahoo.com

Cite this article: 

Kh. Lotfy The effect of a magnetic field on a 2D problem of fibre-reinforced thermoelasticity rotation under three theories 2012 Chin. Phys. B 21 064214

[1] Othman M I A 2008 Multi. Modeling in Materials and Structures 1 231
[2] Othman M I A and Song Y 2008 Appl. Math. Modelling 32 811
[3] Paria G 1967 Adv. Appl. Mech. 10 73
[4] Belfield A J, Rogers T G and Spencer A J M 1983 J. Mech. Phys. Solids 31 25
[5] Verma P D S and Rana O H 1983 Mech. Materials 2 353
[6] Singh S J 2002 Sãdhanã 27 1
[7] Sengupta P R and Nath S 2001 Sãdhanã 26 363
[8] Hashin Z and Rosen W B 1964 J. Appl. Mech. 31 223
[9] Singh B and Singh S J 2004 Sãdhanã 29 249
[10] Chattopadhyay A and Choudhury S 1990 Int. J. Eng. Sci. 28 485
[11] Chaudhary S, Kaushik V P and Tomar S K 2004 Acta Geoph. Polonica 52 219
[12] Chattopadhyay A and Choudhury S 1995 Int. J. Num. Anal. Meth. Geomech. 19 289
[13] Pradhan A S, Samal K and Mahanti N C 2003 Tamkang J. Sci. Eng. 6:3 173
[14] Chattopadhyay A, Venkateswarlu R L K and Saha S 2002 Sãdhanã 27 613
[15] Othman M I A and Song Y 2007 Int. J. Sol. & Struc. 44 5651
[16] Verma P D S, Rana O H and Verma M 1988 Indian J. Pure Appl. Math. 19 713
[17] Singh B 2006 Arch. Appl. Mech. 75 513
[18] Verma P D S 1986 Int. J. Eng. Sci. 24 1067
[19] Ezzat M and Othman M I A 2002 J. Thermal Stresses 25 409
[20] Sherief H H and Helmy K A 2002 Int. J. Eng. Sci. 40 587
[21] Roy Choudhuri S K and Mukhopadhyay S 2000 Int. J. Math. Sci. 23 479
[22] Othman M I A, Lotfy K H and Farouk R M 2009 Acta Phys. Polonica A 116 186
[23] Ezzat M and Othman M I A 2000 Int. J. Engng. Sci. 38 107
[24] Othman M I A 2010 Mechanics and Mechanical Engineering 14 31
[25] Othman M I A 2004 Acta Mechanica 169 37
[26] Roy Choudhuri S K 1990 Comput. Math. Appl. 19 85
[27] Lotfy K H 2012 Chin. Phys. B 21 014209
[28] Roy Choudhuri S K and Debnath L 1985 J. Elasticity 15 59
[29] Othman M I A and Lotfy K H 2009 MMMS 5 235
[30] Lotfy K H 2011 Chin. Phys. B 20 074601
[31] Othman M I A and Lotfy K H 2010 Int. Commun. Heat Mass Transfer 37 192
[32] Othman M I A and Lotfy K H 2009 Int. J. Ind. Math. 2 87
[33] Lord H W and Şhulman Y A 1967 J. Mech. Phys. Solid 15 299
[34] Green A E and Lindsay K A 1972 J. Elasticity 2 1
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
[7] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[8] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[9] Rotational manipulation of massive particles in a 2D acoustofluidic chamber constituted by multiple nonlinear vibration sources
Qiang Tang(汤强), Pengzhan Liu(刘鹏展), and Shuai Tang(唐帅). Chin. Phys. B, 2022, 31(4): 044301.
[10] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[11] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[12] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[13] Amplitude and rotation of the ellipticity of harmonicsfrom a linearly polarized laser field
Ping Li(李萍), Na Gao(高娜), Rui-Xian Yu(蔚瑞贤), Jun Wang(王俊), Su-Yu Li(李苏宇), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2022, 31(10): 103303.
[14] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[15] Generation of diffraction-free vectorial elliptic hollow beams with space-varying inhomogeneous polarizations
Hui-Rong Li(李会容), Peng-Yi Zhao(赵朋义), and Jian-Ping Yin(印建平). Chin. Phys. B, 2021, 30(8): 084204.
No Suggested Reading articles found!