Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 038703    DOI: 10.1088/1674-1056/21/3/038703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Chaotic diagonal recurrent neural network

Wang Xing-Yuan(王兴元) and Zhang Yi(张诣)
School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  We propose a novel neural network based on a diagonal recurrent neural network and chaos, and its structure and learning algorithm are designed. The multilayer feedforward neural network, diagonal recurrent neural network, and chaotic diagonal recurrent neural network are used to approach the cubic symmetry map. The simulation results show that the approximation capability of the chaotic diagonal recurrent neural network is better than the other two neural networks.
Keywords:  diagonal recurrent neural network      chaos      cubic symmetry map  
Received:  06 May 2011      Revised:  08 November 2011      Accepted manuscript online: 
PACS:  87.19.lj (Neuronal network dynamics)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172), the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).
Corresponding Authors:  Zhang Yi,zoey0313@sina.com     E-mail:  zoey0313@sina.com

Cite this article: 

Wang Xing-Yuan(王兴元) and Zhang Yi(张诣) Chaotic diagonal recurrent neural network 2012 Chin. Phys. B 21 038703

[1] Liu A Q, Shih S C and Wang Q J 2009 IEEE Trans. Syst. Man Cy. A 39 426
[2] Xie W F, Zhu Y Q and Wong Y K 2009 Neurocomputing 72 3277
[3] He G G, Zhu P, Chen H P and Cao Z T 2006 Acta Phys. Sin. 55 1040 (in Chinese)
[4] Lu H T 2002 Phys. Lett. A 298 109
[5] Tang Q and Wang X Y 2010 Chin. Phys. Lett. 27 030508
[6] Zhang H G and Wang Z S 2007 IEEE Trans. Neural Networ. 18 947
[7] Chen S J and Hong Y G 2011 Chin. Phys. B 20 036401
[8] Chen P F, Chen Z Q and Wu W J 2011 Chin. Phys. B 20 040509
[9] Gao F R, Wang F L and Li M Z 2000 Chem. Eng. Sci. 55 1283
[10] Mastorocostas P A and Theocharis J B 2006 IEEE Trans. Syst. Man Cy. B 36 242
[11] Cao J C and Lin X C 2008 Eng. Appl. Artif. Intel. 21 1255
[12] Mastorocostas P A and Hilas C S 2009 Neural Comput. Appl. 18 707
[13] Zhang H G and Luo Y H 2009 IEEE Trans. Neural Networ. 20 1490
[14] Dong M, Zhang H G and Wang Y C 2009 Neurocomputing 72 1999
[15] Ji X D and Familoni B O 1999 IEEE Trans. Automat. Contr. 44 1469
[16] Rogers T D and Whitley D C 1983 Math. Model. 4 9
[17] Aienberg I, Paliy D V, Zurada J M and Astola J T 2008 Neural Networ. 19 883
[18] Gu Z Q and Oyadiji S O 2008 J. Vib. Acoust. 130 061001
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[7] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[8] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!