Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 044209    DOI: 10.1088/1674-1056/21/4/044209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A simple scheme to generate $\chi$-type four-charge entangled states in circuit QED

Gao Gui-Long (高贵龙)a,Song Fu-Quan (宋付权)b,Huang Shou-Sheng (黄寿胜)a,Wang Hui (王辉)a,Yuan Xian-Zhang (袁先漳)a,Wang Ming-Feng (王明锋)a,Jiang Nian-Quan (姜年权)a
a. College of Physics and Electric Information, Wenzhou University, Wenzhou 325035, China;
b. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract  We propose a simple scheme to generate χ-type four-charge entangled states by using SQUID-based charge qubits capacitively coupled to a transmission line resonator (TLR). The coupling between the superconducting qubit and the TLR can be effectively controlled by properly adjusting the control parameters of the charge qubit. The experimental feasibility of our scheme is also shown.
Keywords:  $\chi$-type entangled state      superconducting quantum interference device      transmission line resonator      superconducting charge qubit  
Received:  30 July 2011      Revised:  26 October 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 10947017/A05 and 11074190), the Science Foundation of the Key Laboratory of Novel Thin Film Solar Cells, China (Grant No. KF200912), and the Graduates’ Innovative Scientific Research Project of Zhejiang Province, China (Grant No. 2011831).
Corresponding Authors:  Jiang Nian-Quan,jiangnq@wzu.edu.cn     E-mail:  jiangnq@wzu.edu.cn

Cite this article: 

Gao Gui-Long (高贵龙), Song Fu-Quan (宋付权), Huang Shou-Sheng (黄寿胜), Wang Hui (王辉), Yuan Xian-Zhang (袁先漳), Wang Ming-Feng (王明锋), Jiang Nian-Quan (姜年权) A simple scheme to generate $\chi$-type four-charge entangled states in circuit QED 2012 Chin. Phys. B 21 044209

[1] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[2] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[3] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[4] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[5] Jiang N Q, Wang Y J, Zheng Y and Cai G C 2008 Chin. Phys. Lett. 25 1943
[6] Lin Q 2010 Acta Phys. Sin. 59 2976 (in Chinese)
[7] Wang S J and Ma S J 2011 Acta Phys. Sin. 60 030302 (in Chinese)
[8] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[9] Li G X 2006 Phys. Rev. A 74 055801
[10] Xue L, Huang S S, Wu L, Ji Y Y and Jiang N Q 2011 Chin. Phys. B 20 050313
[11] Gerry C C and Campos R A 2003 Phys. Rev. A 68 025602
[12] Xu Y, Fan W, Chen B and Li Z X 2011 Acta Phys. Sin. 60 060305 (in Chinese)
[13] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[14] Xiu L 2010 Chin. Phys. Lett. 27 044207
[15] He Y and Jiang N Q 2010 Opt. Commun. 283 1558
[16] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[17] Wang X W, Xia L X, Wang Z Y and Zhang D Y 2010 Opt. Commun. 283 1196
[18] Xiu X M, Dong L and Gao Y J 2011 Opt. Commun. 284 2065
[19] Xiu X M, Dong H K, Dong L, Gao Y J and Chi F 2009 Opt. Commun. 282 2457
[20] Xiu X M, Dong L, Gao Y J and Chi F 2009 Commun. Theor. Phys. 52 60
[21] Zhan Y B, Zhang Q Y and Wang Y W 2010 Commun. Theor. Phys. 53 847
[22] Gao G 2010 Phys. Scr. 81 065005
[23] Xue L, Wu L, Cai G C and Jiang N Q 2011 Int. J. Quantum Inf. 9 875
[24] Wang X W and Yang G J 2008 Phys. Rev. A 78 024301
[25] Wang X W 2009 Opt. Commun. 282 1052
[26] Liu G Y and Kuang L M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 165505
[27] Wang H F and Zhang S 2009 Phys. Rev. A 79 042336
[28] Shen H W, Wang H F, Ji X and Zhang S 2009 Chin. Phys. B 18 3706
[29] You J and Nori F 2005 Phys. Today 58 11
[30] Makhlin Y, Sch G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[31] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[32] Houck A A, Schreier J A, Johnson B R, Chow J M, Koch J, Gambetta J M, Schuster D I, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. Lett. 101 080502
[33] Gambetta J, Blais A, Schuster D I, Wallraff A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2006 Phys. Rev. A 74 042318
[34] Majer J, Chow J, Gambetta J, Koch J, Johnson B, Schreier J, Frunzio L, Schuster D, Houck A and Wallraff A 2007 Nature 449 443
[35] Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, Göpple M, Steffen L and Wallraff A 2009 Phys. Rev. B 79 180511
[36] DiCarlo L, Chow J, Gambetta J, Bishop L S, Johnson B, Schuster D, Majer J, Blais A, Frunzio L and Girvin S 2009 Nature 460 240
[37] Clarke J and Wilhelm F K 2008 Nature 453 1031
[38] Zheng S B 2003 Phys. Rev. A 68 035801
[39] Linden N, Massar S and Popescu S 1998 Phys. Rev. Lett. 81 3279
[40] Astafiev O, Pashkin Y A, Nakamura Y, Yamamoto T and Tsai J S 2004 Phys. Rev. Lett. 93 267007
[41] Baur M, Filipp S, Bianchetti R, Fink J M, Göpple M, Steffen L, Leek P J, Blais A and Wallraff A 2009 Phys. Rev. Lett. 102 243602
[42] Schuster D, Houck A, Schreier J, Wallraff A, Gambetta J, Blais A, Frunzio L, Johnson B, Devoret M and Girvin S 2006 arXiv/: cond-mat/0608693
[43] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[44] Yang C P, Liu Y X and Nori F 2010 Phys. Rev. A 81 062323
[45] Yang C P 2010 Phys. Rev. A 82 054303
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[3] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[4] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[5] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[6] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[7] Low-Tc direct current superconducting quantum interference device magnetometer-based 36-channel magnetocardiography system in a magnetically shielded room
Qiu Yang (邱阳), Li Hua (李华), Zhang Shu-Lin (张树林), Wang Yong-Liang (王永良), Kong Xiang-Yan (孔祥燕), Zhang Chao-Xiang (张朝祥), Zhang Yong-Sheng (张永升), Xu Xiao-Feng (徐小峰), Yang Kang (杨康), Xie Xiao-Ming (谢晓明). Chin. Phys. B, 2015, 24(7): 078501.
[8] Frequency-tunable transmon in a three-dimensional copper cavity
Pan Jia-Zheng (潘佳政), Cao Zhi-Min (曹志敏), Fan Yun-Yi (范云益), Zhou Yu (周渝), Lan Dong (兰栋), Liu Yu-Hao (刘宇浩), Chen Zhi-Ping (陈志平), Li Yong-Chao (李永超), Cao Chun-Hai (曹春海), Xu Wei-Wei (许伟伟), Kang Lin (康琳), Chen Jian (陈健), Yu Hai-Feng (于海峰), Yu Yang (于扬), Sun Guo-Zhu (孙国柱), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(11): 110301.
[9] Fabrication and properties of high performance YBa2Cu3O7-δ radio frequency SQUIDs with step-edge Josephson junctions
Liu Zheng-Hao (刘政豪), Wei Yu-Ke (魏玉科), Wang Da (王达), Zhang Chen (张琛), Ma Ping (马平), Wang Yue (王越). Chin. Phys. B, 2014, 23(9): 097401.
[10] Study on signal intensity of low field nuclear magnetic resonance via indirect coupling measurement
Jiang Feng-Ying (蒋凤英), Wang Ning (王宁), Jin Yi-Rong (金贻荣), Deng Hui (邓辉), Tian Ye (田野), Lang Pei-Lin (郎佩琳), Li Jie (李洁), Chen Ying-Fei (陈莺飞), Zheng Dong-Ning (郑东宁). Chin. Phys. B, 2013, 22(4): 047401.
[11] Implementation of quantum partial search with superconducting quantum interference device qudits in cavity QED
Li Hong-Yi (李虹轶), Wu Chun-Wang (吴春旺), Chen Yu-Bo (陈玉波), Lin Yuan-Gen (林源根), Chen Ping-Xing (陈平形), Li Cheng-Zu (李承祖). Chin. Phys. B, 2013, 22(11): 110305.
[12] An experimental scheme to verify the dynamics of the Aharonov--Bohm effect
Wang Rui-Feng(王瑞峰). Chin. Phys. B, 2009, 18(8): 3226-3232.
[13] Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator
Shi Zhen-Gang(施振刚), Chen Xiong-Wen(谌雄文), Zhu Xi-Xiang(朱喜香), and Song Ke-Hui(宋克慧). Chin. Phys. B, 2009, 18(3): 910-914.
[14] Multipartite entanglement in the interaction system between a single-mode microwave cavity field and superconducting charge qubits
Shi Zhen-Gang(施振刚), Chen Xiong-Wen(谌雄文), Zhu Xi-Xiang(朱喜香), and Song Ke-Hui(宋克慧). Chin. Phys. B, 2007, 16(6): 1615-1618.
[15] Quantum search via superconducting quantum interference devices in a cavity
Lu Yan(卢艳), Dong Ping(董萍), Xue Zheng-Yuan(薛正远), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2007, 16(12): 3601-3604.
No Suggested Reading articles found!