Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040306    DOI: 10.1088/1674-1056/21/4/040306
GENERAL Prev   Next  

Deterministic implementations of fermionic quantum SWAP and Fredkin gates for spin qubits based on charge detection

Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Zhu Ai-Dong(朱爱东)
Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  We propose a scheme to implement fermionic quantum SWAP and Fredkin gates for spin qubits with the aid of charge detection. The scheme is deterministic without the need of qubit-qubit interaction, and the proposed setups consist of simple polarizing beam splitters, single-spin rotations, and charge detectors. Compared with linear optics quantum computation, this charge-measurement-based qubit scheme greatly enhances the success probability for implementing quantum SWAP and Fredkin gates and greatly simplifies the experimental realization of scalable quantum computers with noninteracting electrons.
Keywords:  SWAP gate      Fredkin gate      charge detection  
Received:  10 October 2011      Revised:  28 October 2011      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.11147174,61068001,11165015,and 11064016)and the Talent Program of Yanbian University of China(Grant No.950010001)
Corresponding Authors:  Wang Hong-Fu, E-mail:hfwang@ybu.edu.cn;Zhang Shou,szhang@ybu.edu.cn     E-mail:  hfwang@ybu.edu.cn;szhang@ybu.edu.cn

Cite this article: 

Wang Hong-Fu(王洪福), Zhang Shou(张寿), and Zhu Ai-Dong(朱爱东) Deterministic implementations of fermionic quantum SWAP and Fredkin gates for spin qubits based on charge detection 2012 Chin. Phys. B 21 040306

[1] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[2] O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature (London) 426 264
[3] Pittman T B, Jacobs B C and Franson J D 2004 Phys. Rev. A 64 062311
[4] Pittman T B, Jacobs B C and Franson J D 2004 Phys. Rev. A 69 042306
[5] Pittman T B, Jacobs B C and Franson J D 2002 Phys. Rev. A 66 052305
[6] Ralph T C, Langford N K, Bell T B and White A G 2002 Phys. Rev. A 65 062324
[7] Hofmann H F and Takeuchi S 2002 Phys. Rev. A 66 024308
[8] Pittman T B, Fitch M J, Jacobs B C and Franson J D 2003 Phys. Rev. A 68 032316
[9] Huang Y F, Ren X F, Zhang Y S, Duan L M and Guo G C 2004 Phys. Rev. Lett. 93 240501
[10] Fiorentino M, Kim T and Wong F N C 2005 Phys. Rev. A 72 012318
[11] Zou X B, Li K and Guo G C 2006 Phys. Rev. A 74 044305
[12] Zou X B, Zhang S L, Li K and Guo G C 2007 Phys. Rev. A 75 034302
[13] vCernoch A, Soubusta J, Bart.uvskov? L, Duvsek M and Fiur醰sek J 2008 Phys. Rev. Lett. 100 180501
[14] Fiur醰sek J 2008 Phys. Rev. A 78 032317
[15] Knill E, Laflamme R and Milburn G 2001 Nature (London) 409 46
[16] Wang H F and Zhang S 2009 Chin. Phys. B 18 2642
[17] Tang S Q, Zhang D Y, Wang X W, Xie L J and Gao F 2011 Chin. Phys. B 20 040308
[18] Zhang G F and Xing Z 2010 Acta Phys. Sin. 59 1468 (in Chinese)
[19] Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
[20] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[21] Bose S and Home D 2002 Phys. Rev. Lett. 88 050401
[22] Beenakker C W J, DiVincenzo D P, Emary C and Kindermann M 2004 Phys. Rev. Lett. 93 020501
[23] Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, Jones G A C and Hasko D G 1993 Phys. Rev. Lett. 70 1311
[24] Buks E, Schuster R, Heiblum M, Mahalu D and Umansky V 1998 Nature (London) 391 871
[25] Oliver W D, Kim J, Liu R C and Yamamoto Y 1999 Science 284 299
[26] Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M and Schönenberger C 1999 Science 284 296
[27] Elzerman J M, Hanson R, Willems van Beveren L H, Vandersypen L M K and Kouwenhoven L P 2004 Appl. Phys. Lett. 84 4617
[28] Engel H A and Loss D 2005 Science 309 586
[29] Herzog T J, Kwiat P G, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 3034
[30] Liu R C, Odom B, Yamamoto Y and Tarucha S 1998 it Nature (London) 391 263
[1] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[2] Heralded linear optical quantum Fredkin gate based on one auxiliary qubit and one single photon detector
Zhu Chang-Hua (朱畅华), Cao Xin (曹鑫), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2014, 23(8): 084207.
[3] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[4] Block-free optical quantum Banyan network based on quantum state fusion and fission
Zhu Chang-Hua (朱畅华), Meng Yan-Hong (孟艳红), Quan Dong-Xiao (权东晓), Zhao Nan (赵楠), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2014, 23(12): 120309.
[5] Quantum state swap for two trapped Rydberg atoms
Wu Huai-Zhi(吴怀志), Yang Zhen-Biao(杨贞标), and Zheng Shi-Biao(郑仕标) . Chin. Phys. B, 2012, 21(4): 040305.
[6] Feasible schemes for quantum swap gates of optical qubits via cavity QED
Tang Shi-Qing(唐世清), Zhang Deng-Yu(张登玉), Wang Xin-Wen(汪新文), Xie Li-Jun(谢利军), and Gao Feng(高峰) . Chin. Phys. B, 2011, 20(4): 040308.
[7] Two quantum oscillators coupled with a planar radio frequency ion trap
Chen Liang(陈亮) and Gao Ke-Lin(高克林). Chin. Phys. B, 2010, 19(11): 110309.
[8] One scheme for remote quantum logical gates with the assistance of a classical field
Li Yan-Ling(李艳玲),Fang Mao-Fa(方卯发), and Zeng Ke(曾可) . Chin. Phys. B, 2010, 19(1): 010307.
[9] Three-qubit Fredkin gate based on cavity quantum electrodynamics
Shao Xiao-Qiang(邵晓强), Chen Li(陈丽), and Zhang Shou(张寿). Chin. Phys. B, 2009, 18(8): 3258-3264.
[10] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[11] Quantum information procession with fermions based on charge detection
Tang Li(唐莉) . Chin. Phys. B, 2009, 18(12): 5155-5160.
[12] Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED
Jiang Chun-Lei(姜春蕾), Fang Mao-Fa(方卯发), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2008, 17(1): 190-193.
No Suggested Reading articles found!