Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 020202    DOI: 10.1088/1674-1056/21/2/020202
GENERAL Prev   Next  

Finite symmetry transformation group of the Konopelchenko–Dubrovsky equation from its Lax pair

Hu Han-Wei(胡瀚玮)a)b) and Yu Jun(俞军)a)
a. Department of Physics, Shaoxing University, Shaoxing 312000, China;
b. Department of Physics, Ningbo University, Ningbo 315211, China
Abstract  Starting from a weak Lax pair, the general Lie point symmetry group of the Konopelchenko-Dubrovsky equation is obtained by using the general direct method. And the corresponding Lie algebra structure is proved to be a Kac-Moody-Virasoro type. Furthermore, a new multi-soliton solution for the Konopelchenko-Dubrovsky equation is also given from this symmetry group and a known solution.
Keywords:  Lax pairs      symmetries      symmetry group      exact solution  
Received:  29 June 2011      Revised:  24 September 2011      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875078) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y7080455).
Corresponding Authors:  Yu Jun,junyu@usx.edu.cn     E-mail:  junyu@usx.edu.cn

Cite this article: 

Hu Han-Wei(胡瀚玮) and Yu Jun(俞军) Finite symmetry transformation group of the Konopelchenko–Dubrovsky equation from its Lax pair 2012 Chin. Phys. B 21 020202

[1] Olver P J 1986 Application of Lie Group to Differential Equation (New York: Springer)
[2] Bluman G W and Anco S C 2002 Symmetry and Integration Methods for Differential Equations Appl. Math. Sci. 154 (New York: Springer)
[3] Xie Y L, Jia L Q and Yang X F 2011 Acta Phys. Sin. 60 030201 (in Chinese)
[4] Liu F, Wang J, Zhao J, Xu Y and Meng Q T 2011 Acta Phys. Sin. 60 040202 (in Chinese)
[5] Hu X R, Chen Y and Huang F 2010 Chin. Phys. B 19 080203
[6] Dong Z Z, Chen Y and Lang Y H 2010 Chin. Phys. B 19 090205
[7] Hu X R and Chen Y 2009 Commun. Theor. Phys. 52 997
[8] Dong Z Z and Chen Y 2010 Commun. Theor. Phys. 54 389
[9] Zhang H P, Li B and Chen Y 2010 Commun. Theor. Phys. 53 450
[10] Lou S Y and Ma H C 2005 J. Phys. A: Math. Gen. 38 L129
[11] Lou S Y and Ma H C 2006 Chaos, Solitons and Fractals 30 804
[12] Lou S Y, Jia M, Tang X Y and Huang F 2007 Phys. Rev. E 75 056318
[13] Lou S Y and Tang X Y 2004 J. Math. Phys. 45 1020
[14] Lian Z J and Lou S Y 2005 Nonlinear Analysis 63 e1167
[15] Legare M 1996 Nonlinear Math. Phys. 3 266
[16] Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 41 8286
[17] Konopelcheno B G qnd Dubrovsky V G 1984 Phys. Lett. A 102 15
[18] Jiang Z H and Bullough R K 1987 J. Phys. A: Math. Gen. 20 L429
[19] Xia T C, Lu Z S and Zhang H Q 2004 Chaos, Solitons and Fractals 20 561
[20] Wang D S and Zhang H Q 2005 Chaos, Solitons and Fractals 25 601
[21] Wazwaz A M 2007 Math. Comput. Model. 45 473
[22] Zhang S and Xia T C 2006 Appl. Math. Comput. 183 1190
[23] Li Z F and Ruan H Y 2005 Commun. Theor. Phys. 44 385
[24] Lou S Y 1993 Phys. Rev. Lett. 71 4099
[25] Lou S Y 1993 J. Phys. A: Math. Gen. 26 4387
[26] Lou S Y 1994 J. Phys. A: Math. Gen. 27 3235
[27] Lin J, Lou S Y and Wang K L 2001 Chin. Phys. Lett. 18 1173
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Space symmetry of effective physical constants for biaxial crystals
Fuan Liu(刘孚安), Zeliang Gao(高泽亮), XinYin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2021, 30(2): 026104.
[3] Theory of unconventional superconductivity in nickelate-based materials
Ming Zhang(张铭), Yu Zhang(张渝), Huaiming Guo(郭怀明), and Fan Yang(杨帆). Chin. Phys. B, 2021, 30(10): 108204.
[4] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[5] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[6] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[7] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[8] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[9] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[10] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[11] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[12] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[13] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[14] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[15] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
No Suggested Reading articles found!