CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios |
Shi Xue-Zhao(时雪钊)a)b), Shen Cheng-Min(申承民) b), Wang Deng-Ke(王登科)b)c), Li Chen(李晨)b), Tian Yuan(田园)b), Xu Zhi-Chuan(徐桎川)b), Wang Chun-Ming(王春明)a)†, and Gao Hong-Jun(高鸿钧)b)‡ |
a College of Chemistry and Engineering, Lanzhou University, Lanzhou 730000, China; b Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b School of Physical Science and Technology, Yunnan University, Kunming 650091, China |
|
|
Abstract Gold nanorods with aspect ratios of from 1 (particles) to 31.6 were synthesized by the seed-mediated method and packed in a highly ordered structure on a large scale on silicon substrates through capillary force induced self-assembly behaviour during solvent evaporation. The gold nanorod surface exhibits a strong enhancing effect on Raman scattering spectroscopy. The enhancement of Raman scattering for two model molecules (2-naphthalenethiol and rhodamine 6G) is about 5—6 orders of magnitude. By changing the aspect ratio of the Au nanorods, we found that the enhancement factors decreased with the increase of aspect ratios. The observed Raman scattering enhancement is strong and should be ascribed to the surface plasmon coupling between closely packed nanorods, which may result in huge local electromagnetic field enhancements in those confined junctions.
|
Received: 01 March 2011
Revised: 13 April 2011
Accepted manuscript online:
|
PACS:
|
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
78.67.Qa
|
(Nanorods)
|
|
87.64.kp
|
(Raman)
|
|
Cite this article:
Shi Xue-Zhao(时雪钊), Shen Cheng-Min(申承民), Wang Deng-Ke(王登科), Li Chen(李晨), Tian Yuan(田园), Xu Zhi-Chuan(徐桎川), Wang Chun-Ming(王春明), and Gao Hong-Jun(高鸿钧) Surface-enhanced Raman scattering properties of highly ordered self-assemblies of gold nanorods with different aspect ratios 2011 Chin. Phys. B 20 076103
|
[1] |
Alekseeva A V, Bogatyrev V A, Dykman L A, Khlebtsov B N, Trachuk L A, Melnikov A G and Khlebtsov N G 2005 Appl. Opt. 44 628
|
[2] |
Yu C and Irudayaraj J 2007 Anal. Chem. 79 572
|
[3] |
Malic L, Cui B, Veres T and Tabrizian M 2007 Opt. Lett. 32 3092
|
[4] |
Nikoobakht B and El-Sayed M A 2003 J. Phys. Chem. A 107 3372
|
[5] |
Gole A, Orendorff C J and Murphy C J 2004 Langmuir 20 7117
|
[6] |
Laurent G, F'elidj N, Aubard J, L'evia G, Krenn J R, Hohenau A, Schider G, Leitner A and Aussenegg F R 2005 J. Chem. Phys. 122 011102
|
[7] |
Huff T B, Tong L, Zhao Y, Hansen M N, Cheng J X and Wei A 2007 Nanomedicine 2 125
|
[8] |
Aslan K, Lakowicz J R and Geddes C D 2005 J. Phys. Chem. B 109 6247
|
[9] |
Alvarez-Puebla R A, dos Santos Jr D S and Aroca R F 2004 Analyst 129 1251
|
[10] |
Nie S M and Emory S R 1997 Science 275 1102
|
[11] |
Michaels A M, Nirmal M and Brus L E 1999 J. Am. Chem. Soc. 121 9932
|
[12] |
Krug J T, Wang G D, Emory S R and Nie S M 1999 J. Am. Chem. Soc. 121 9208
|
[13] |
Emory S R and Nie S M 1997 Anal. Chem. 69 2631
|
[14] |
Doering W E and Nie S M 2002 J. Phys. Chem. B 106 311
|
[15] |
Emory S R, Haskins W E and Nie S M 1998 J. Am. Chem. Soc. 129 8009
|
[16] |
Zhang S Z, Ni W H, Kou X S, Yeung M H, Sun L D, Wang J F and Yan C H 2007 Adv. Funct. Mater. 17 3258
|
[17] |
Sabur A, Havel M and Gogotsi Y 2008 J. Raman Spectrosc. 39 61
|
[18] |
cClha M C, Kahraman M, Tokman N and Türkoglu G 2008 J. Phys. Chem. C 112 10338
|
[19] |
Michaels A M, Jiang J and Brus L 2000 J. Phys. Chem. B 104 11965
|
[20] |
Schwartzberg A M, Grant C D, Wolcott A, Talley C E, Huser T R, Bogomolni R and Zhang J Z 2004 J. Phys. Chem. B 108 19191
|
[21] |
Jiang J, Bosnick K, Maillard M and Brus L 2003 J. Phys. Chem. B 107 9964
|
[22] |
Kim T, Lee K, Gong M S and Joo S W 2005 Langmuir 21 9524
|
[23] |
Ueno K, Mizeikis V, Juodkazis S, Sasaki K and Misawa H 2005 Opt. Lett. 30 2158
|
[24] |
Gou L F and Murphy C J 2005 Chem. Mater. 17 3668
|
[25] |
Lee K S and El-Sayed M 2006 J. Phys. Chem. B 110 19220
|
[26] |
Lee K S and El-Sayed M A 2005 J. Phys. Chem. B 109 20331
|
[27] |
Tridib K S and Arun C 2004 Langmuir 20 3520
|
[28] |
Yang Y, Matsubara S, Nogami M, Shi J L and Huang W M 2006 Nanotechnology 17 2821
|
[29] |
Link S and El-Sayed M 1999 J. Phys. Chem. B 103 8410
|
[30] |
Chaneya S B, Shanmukh S, Dluhy R A and Zhao Y P 2005 Appl. Phys. Lett. 87 031908
|
[31] |
Orendorff C J, Gearheart L, Janaz N R and Murphy C J 2006 Phys. Chem. Chem. Phys. 8 165
|
[32] |
Orendorff C J, Gole A, Sau T K and Murphy C J 2005 Anal. Chem. 77 3261
|
[33] |
Jana N R, Gearheart L and Murphy C J 2001 J. Phys. Chem. B 105 4065
|
[34] |
Xu Z C, Shen C M, Xiao C W, Yang T Z, Zhang H R, Li J Q, Li H L and Gao H J 2007 Nanotechnology 18 115608
|
[35] |
Xu Z C, Shen C M, Xiao C W, Yang T Z, Chen S T, Li H L and Gao H J 2006 Chem. Phys. Lett. 432 222
|
[36] |
Sun Y G and Xia Y N 2002 Science 298 2176
|
[37] |
Maryuri R and Haes A J 2008 J. Am. Chem. Soc. 130 14273
|
[38] |
Shen C M, Hui C, Yang T Z, Xiao C W, Tian J F, Bao L H, Chen S T, Ding H and Gao H J 2008 Chem. Mater. 20 6939
|
[39] |
Hildebrandt P and Stockburger M 1984 J. Phys. Chem. 88 5935
|
[40] |
Lu Y, Liu G L, Kim J, Mejia Y X and Lee L P 2005 Nano Lett. 5 119
|
[41] |
Taylor C E, Pemberton J E, Goodman G G and Schoenfisch M H 1999 Appl. Spectrosc. 53 1212
|
[42] |
Voshchinnikov N V and Farafonov V G 1993 Astrophys. Space Sci. 204 19
|
[43] |
Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|