|
|
Influence of rotational excitation and collision energy on the stereo dynamics of the reaction: N(4S)+H2 (v = 0, j = 0, 2, 5, 10)→NH(X3$\Sigma$-)+H |
Yu Yong-Jiang(于永江)†, Xu Qiang(徐强), and Xu Xiu-Wei(徐秀玮) |
School of Physics, Ludong University, Yantai 264025, China |
|
|
Abstract The N+H2 reaction has attracted a great deal of attention from both the experimental and the theoretical community, and most of the attention has been paid to the first excited state N(2D) atoms in collisions with hydrogen molecules and the scalar properties of the reaction. In this paper, we study the stereo dynamical properties and calculate the reaction cross sections of the N(4S) + H2 (v=0, j=0, 2, 5, 10) → NH(X3$\Sigma$-) + H using the quasi-classical trajectory (QCT) method on an accurate NH2 potential energy surface (PES) reported by Poveda and Varandas [Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867], in a collision energy range of 25 kcal·mol-1-140 kcal·mol-1. Results indicate that the reactant rotational excitation and initial collision energy both have a considerable influence on the distributions of the k-j′ correlation, the k-k′-j′ correlation and k-k′ correlation. The differential cross section is found to be sensitive to collision energy.
|
Received: 29 May 2011
Revised: 26 June 2011
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: ¤Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Z2008A02). |
Cite this article:
Yu Yong-Jiang(于永江), Xu Qiang(徐强), and Xu Xiu-Wei(徐秀玮) Influence of rotational excitation and collision energy on the stereo dynamics of the reaction: N(4S)+H2 (v = 0, j = 0, 2, 5, 10)→NH(X3$\Sigma$-)+H 2011 Chin. Phys. B 20 123402
|
[1] |
Strobel D F 1983 Int. Rev. Phys. Chem. 3 145
|
[2] |
Wilson E H and Atreya S K 2004 J. Geophys. Res. 109 E06002
|
[3] |
Prasad K, Yetter R A and Smooke M D 1997 Combust. Sci. Technol. 124 35
|
[4] |
Umemoto H, Asai T and Kimura Y 1997 J. Chem. Phys. 106 4985
|
[5] |
Chu T S, Han K L and Varandas A J C 2006 J. Phys. Chem. A 110 1666
|
[6] |
Balucani N, Alagia M, Cartechini L, Casavecchia P, Volpi G G, Pederson L and Schatz G C 2001 J. Phys. Chem. A 105 2414
|
[7] |
Honvault P and Launay J M 1999 J. Chem. Phys. 111 6665
|
[8] |
Pederson L A, Schatz G C, Ho T S, Hollebeek T, Rabitz H, Harding L B and Lendvay G 1999 J. Chem. Phys. 110 9091
|
[9] |
Koshi M, Yoshimura M, Fukuda K, Matsui H, Saito K, Watanabe M, Imamura A and Chen C 1990 J. Chem. Phys. 93 8703
|
[10] |
Takayanagi T, Kurosaki Y and Yokoyama K 2000 Chem. Phys. Lett. 321 106
|
[11] |
Zhang S W and Thanh N T 2000 J. Chem. Phys. 113 6149
|
[12] |
Pascual R Z, Schatz G C, Lendvay G and Troya D 2002 J. Phys. Chem. A 106 4125
|
[13] |
Davidson D F and Hanson R K 1990 Int. J. Chem. Kinet. 22 843
|
[14] |
Poveda L A and Varandas A J C 2005 Phys. Chem. Chem. Phys. 7 2867
|
[15] |
Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
|
[16] |
Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
|
[17] |
Varandas A J C 1988 Adv. Chem. Phys. 74 255
|
[18] |
Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
|
[19] |
Adam L, Hack W, Zhu H, Qu Z W and Schinke R 2005 J. Chem. Phys. 122 114301
|
[20] |
Carmona-Novillo E, Gonzalez-Lezana T, Roncero O, Honvault P, Launay J M, Bulut N, Aoiz F J, Banares L, Trottier A and Wrede E 2008 J. Chem. Phys. 128 15
|
[21] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[22] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
|
[23] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[24] |
Zhu T, Hu G D, Chen J Z, Liu X G and Zhang Q G 2010 Chin. Phys. B 19 083402
|
[25] |
Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
|
[26] |
Xu Z H and Zong F J 2011 Chin. Phys. B 20 063104
|
[27] |
Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[28] |
Chu T S 2010 J. Comput. Chem. 31 1385
|
[29] |
Mcclelland G M and Herschbach D R 1979 J. Phys. Chem. A 83 1445
|
[30] |
Barnwell J D, Loeser J G and Herschbach D R 1983 J. Phys. Chem. A 87 2781
|
[31] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[32] |
Shaferray N E, Orrewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
|
[33] |
Brouard M, Lambert H M, Rayner S P and Simons J P 1996 Mol. Phys. 89 403
|
[34] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[35] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[36] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[37] |
Ma J J, Chen M D, Cong S L and Han K L 2006 Chem. Phys. 327 529
|
[38] |
Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
|
[39] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[40] |
Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
|
[41] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|