Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 105207    DOI: 10.1088/1674-1056/27/10/105207
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam

Ridip Sarma1, Amar P Misra2, Nirab C Adhikary3
1 Department of Mathematics, University of Science and Technology, Techno City, Khanapara, Baridua, 9th Mile, Ri-Bhoi, Meghalaya, India;
2 Department of Mathematics, Siksha Bhavana, Visva-Bharati University, Santiniketan-731235, West Bengal, India;
3 Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati-781035, Assam, India
Abstract  

The propagation characteristics of nonlinear ion-acoustic (IA) solitary waves (SWs) are studied in thermal electron-positron-ion plasma considering the effect of relativistic positron beam. Starting from a set of fluid equations and using the reductive perturbation technique, we derive a Korteweg-de Vries (KdV) equation which governs the evolution of weakly nonlinear IA SWs in relativistic beam driven plasmas. The properties of the IA soliton are studied, and it is shown that the presence of relativistic positron beam significantly modifies the characteristics of IA solitons.

Keywords:  electron-positron-ion plasma      relativistic effect      ion-acoustic wave      homogeneous balance method  
Received:  22 February 2018      Revised:  24 May 2018      Accepted manuscript online: 
PACS:  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.35.Sb (Solitons; BGK modes)  
  52.27.Ny (Relativistic plasmas)  
Corresponding Authors:  Nirab C Adhikary     E-mail:  iasst@yahoo.co.in

Cite this article: 

Ridip Sarma, Amar P Misra, Nirab C Adhikary Nonlinear ion-acoustic solitary waves in an electron-positron-ion plasma with relativistic positron beam 2018 Chin. Phys. B 27 105207

[1] Zhao M, Shan X, Niu S and Chen X 2017 Chin. Phys. B 26 093103
[2] Gan C Y, Xiang N and Yu Z 2016 Chin. Phys. Lett. 33 085203
[3] Adhikary N C, Deka M K, Dev A N and Sarmah J 2014 Phys. Plasmas 21 083703
[4] Ye C E and Zhang W G 2010 Acta Phys. Sin. 59 5229 (in Chinese)
[5] Misra A P and Roy Chowdhury A 2003 Chaos, Solitons and Fractals 15 801
[6] Abdelwahed H G, El-Shewy E K and Mahmoud A A 2017 Chin. Phys. Lett. 34 035202
[7] Alam M S, Hafez M G, Talukder M R and Ali M H 2017 Chin. Phys. B 26 095203
[8] Dev A N 2017 Chin. Phys. B 26 025203
[9] Jian M J, Rong Y J and Ying L C 2012 Acta Phys. Sin. 61 020206 (in Chinese)
[10] Surko C M, Leventhal M and Passner A 1989 Phys. Rev. Lett. 62 901
[11] Surko C M and Murphy T J 1990 Phys. Fluids A 2 1372
[12] Greaves R G, Tinkle M D and Surko C M 1994 Phys. Plasmas 1 1439
[13] Sarri G, Dieckmann M E, Kourakis I, Di Piazza A, Reville B, Keitel C H and Zepf M 2015 J. Plasma Phys. 81 455810401
[14] Popel S I, Vladimirov S V and Shukla P K 1995 Phys. Plasmas 2 716
[15] Nejoh Y N 1996 Phys. Plasmas 3 1447
[16] Saleem H 2006 Phys. Plasmas 13 34503
[17] Esfandyari-Kalejahi A, Akbari-Moghanjoughi M and Saberian E 2010 Plasma Fusion Res. 5 045
[18] Chatterjee P, Ghosh U, Roy K, Muniandy S V, Wong C S and Sahu B 2010 Phys. Plasmas 17 122314
[19] Chatterjee P, Saha T, Muniandy S V, Wong C S and Roychoudhury R 2010 Phys. Plasmas 17 012106
[20] Shan S A, El-Tantawy S A and Moslem W M 2013 Phys. Plasmas 20 082104
[21] Shan S A and El-Tantawy S A 2016 Phys. Plasma S 23 072112
[22] Adhikary N C, Mishra A P, Deka M K and Dev A N 2017 Phys. Plasmas 24 073703
[23] Dev A N, Deka M K, Sarma J, Saikia D and Adhikary N C 2016 Chin. Phys. B 25 105202
[24] Gill T S, Singh A, Kaur H, Saini N S and Bala P 2007 Phys. Lett. A 361 364
[25] Gill T S, Bains A S and Saini N S 2009 Can. J. Phys. 87 861
[26] Han J, Du S and Duan W 2008 Phys. Plasmas 15 112104
[27] Shah A, Haque Q and Mahmood S 2011 Astrophys. Space Sci. 335 529
[28] Hafez M G, Talukder M R and Sakthivel R 2016 Indian J. Phys. 90 603
[29] Hafez M G and Talukder M R 2015 Astrophys. Space Sci. 359 27
[30] Gsponer A 2004 arXiv:physics/0409157v3[physics.plasm-ph]
[31] Wang M L 1995 Phys. Lett. A 199 169
[32] Svensson R 1982 Astrophys. J. 258 335
[1] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[2] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[3] Upstream ion wave excitation in an ion-beam-plasma system
Kai-Yang Yi(弋开阳), Jin-Xiu Ma(马锦秀), Zi-An Wei(卫子安), Zheng-Yuan Li(李政元). Chin. Phys. B, 2018, 27(5): 055201.
[4] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[5] Relativistic and distorted wave effects on Xe 4d electron momentum distributions
Minfu Zhao(赵敏福), Xu Shan(单旭), Shanshan Niu(牛姗姗), Xiangjun Chen(陈向军). Chin. Phys. B, 2017, 26(9): 093103.
[6] Dynamics of laser beams in inhomogeneous electron—positron—ion plasmas
Cheng Li-Hong (成丽红), Tang Rong-An (唐荣安), Du Hong-E (杜宏娥), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2015, 24(7): 075201.
[7] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
[8] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[9] The effects of relativistic broadening and frequency down-shift on electron–cyclotron emission measurements in EAST
Liu Yong(刘永), Han Xiang(韩翔), Ti Ang(提昂), Wang Yu-Min(王嵎民) Ling Bi-Li(凌必利), Hu Li-Qun(胡立群), and Gao Xiang(高翔) . Chin. Phys. B, 2012, 21(4): 045201.
[10] Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma
Jiang Chen-Fan-Fu(蒋陈凡夫), Zheng Jian(郑坚), and Zhao Bin(赵斌) . Chin. Phys. B, 2011, 20(9): 095202.
[11] Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation
Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud. Chin. Phys. B, 2011, 20(4): 040508.
[12] Valence orbitals of W(CO)6 using electron momentum spectroscopy
Shi Le-Lei(石砳磊), Liu Kun(刘昆), Luo Zhi-Hong(罗志宏), Ning Chuan-Gang(宁传刚), and Deng Jing-Kang(邓景康) . Chin. Phys. B, 2011, 20(11): 113403.
[13] Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian(门福殿), Liu Hui(刘慧), Fan Zhao-Lan(范召兰), and Zhu Hou-Yu(朱后禹). Chin. Phys. B, 2009, 18(7): 2649-2653.
[14] New localized excitations in a (2+1)-dimensional Broer—Kaup system
Bai Cheng-Lin (白成林), Liu Xi-Qiang (刘希强), Zhao Hong (赵红). Chin. Phys. B, 2005, 14(2): 285-292.
[15] Backlünd transformation and multiple soliton solutions for the (3+1)-dimensional Nizhnik-Novikov-Veselov equation
Bai Cheng-Lin (白成林). Chin. Phys. B, 2004, 13(1): 1-4.
No Suggested Reading articles found!