|
|
Drinfeld twist and the domain wall partition function of the eight-vertex model |
Hao Kun(郝昆)†,Chen Xi(陈曦),Shi Kang-Jie(石康杰),and Yang Wen-Li(杨文力)† |
Institute of Modern Physics, Northwest University, Xian 710069, China |
|
|
Abstract With the help of the F-basis provided by the Drinfeld twist or factorising F-matrix for the spatial optical soliton model associated with the eight-vertex model, we calculate the partition function for the eight-vertex model on an N × N square lattice with domain wall boundary condition.
|
Received: 12 April 2010
Revised: 15 September 2010
Accepted manuscript online:
|
PACS:
|
03.65.Fd
|
(Algebraic methods)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
05.30.-d
|
(Quantum statistical mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China Grant Nos. 11075126 and 11031005). |
Cite this article:
Hao Kun(郝昆),Chen Xi(陈曦),Shi Kang-Jie(石康杰),and Yang Wen-Li(杨文力) Drinfeld twist and the domain wall partition function of the eight-vertex model 2011 Chin. Phys. B 20 010303
|
[1] |
Korepin V E 1982 Commun. Math. Phys. 86 391
|
[2] |
Korepin V E, Bololiubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press)
|
[3] |
Izergin A G 1987 Sov. Phys. Dokl. 32 878
|
[4] |
Izergin A G, Coker D A and Korepin V E 1992 J. Phys. A 25 4315
|
[5] |
Essler F H L, Frahm H, Izergin A G and Korepin V E 1995 Commun. Math. Phys. 174 191
|
[6] |
Kitanine N, Maillet J M and Terras V 1999 Nucl. Phys. B 554 647
|
[7] |
Bleher P M and Fokin V V 2005 math-ph/0510033
|
[8] |
Sogo K 1993 J. Phys. Soc. Jpn. 62 1887
|
[9] |
Kuperburg G 1996 Int. Math. Res. Not. 3 139
|
[10] |
Kuperburg G 2002 Ann. of Math. 156 835
|
[11] |
Caradoc A, Foda O and Kitanine N 2006 J. Stat. Mech p03012
|
[12] |
Foda O, Wheeler M and Zuparic M 2007 J. Stat. Mech. p10016
|
[13] |
Foda O, Wheeler M and Zuparic M 2008 J. Stat. Mech. p02001
|
[14] |
Yang W L and Zhang Y Z 2009 J. Math. Phys. 50 083518
|
[15] |
Maillet J M and Sanchez de Santos 2000 J. Amer. Math. Soc. Transl. 201 137
|
[16] |
Drinfeld V G 1983 Sov. Math. Dokl. 28 667
|
[17] |
Terras V 1999 Lett. Math. Phys. 48 263
|
[18] |
Albert T D, Boos H, Flume R and Rulig K 2000 J. Phys. A 33 4963
|
[19] |
Albert T D, Boos H, Flume R, Poghossian R H and Rulig K 2000 Lett. Math. Phys. 53 201
|
[20] |
Albert T D and Rulig K 2001 J. Phys. A bf 34 1569
|
[21] |
Zhao S Y, Yang W L and Zhang Y Z 2005 it J. Stat. Mech. p04005
|
[22] |
Zhao S Y, Yang W L and Zhang Y Z 2006 Commun. Math. Phys. 268 505
|
[23] |
Zhao S Y, Yang W L and Zhang Y Z 2006 Int. J. Mod. Phys. B 20 505
|
[24] |
Yang W L, Zhang Y Z and Zhao S Y 2004 JHEP 12 038
|
[25] |
Yang W L, Zhang Y Z and Zhao S Y 2006 Commun. Math. Phys. 264 87
|
[26] |
Whittaker E T and Watson G N 2002 A Course of Modern Analysis: 4th edn. (Cambridge: Cambridge University Press)
|
[27] |
Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic Press)
|
[28] |
Jimbo M, Miwa T and Okado M 1987 Lett. Math. Phys. 14 123
|
[29] |
Jimbo M, Miwa T and Okado M 1988 Nucl. Phys. B 300 74
|
[30] |
Yang W L and Zhang Y Z 2006 Nucl. Phys. B bf744 312
|
[31] |
Yang W L and Zhang Y Z 2008 Nucl. Phys. B 789 591
|
[32] |
Belavin A and Jimbo M 2004 Int. J. Mod. Phys. A 19 50
|
[33] |
Yang W L, Belavin A and Sasaki R 2005 Nucl. Phys. B 710 614
|
[34] |
Felder G and Varchenko A 1996 Nucl. Phys. B 480 485
|
[35] |
Hou B Y, Sasaki R and Yang W L 2003 Nucl. Phys. B 663 467
|
[36] |
Hou B Y, Sasaki R and Yang W L 2004 J. Math. Phys. bf 45 559
|
[37] |
Pakuliak S, Rubtsov V and Silantyev A 2008 J. Phys. 41 295204
|
[38] |
Yang W L and Zhang Y Z 2010 Nucl. Phys. B 831 408
|
[39] |
Rosengren H 2008 arXiv:0801.1229
|
[40] |
Yang W L and Hou B Y 1999 wxActa Phys. Sin.48 1560 (in Chinese)
|
[41] |
Yang W L and Hou B Y 1999 wxActa Phys. Sin.48 1571 (in Chinese)
|
[42] |
Yang W L and Hou B Y 1999 wxActa Phys. Sin.48 1565 (in Chinese)
|
[43] |
Li B and Wang Y S 2007 wxActa Phys. Sin.56 1260 (in Chinese)
|
[44] |
Yang W L 2001 wxChin. Phys. 10 109
|
[45] |
Chen K, Hou B Y and Yang W L 2001 wxChin. Phys. B10 550
|
[46] |
Razumov A V and Stroganov Yu G 2008 arXiv:0805.0669
|
[47] |
Razumov A V and Stroganov Yu G 2008 arXiv:0812.2654
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|