Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010204    DOI: 10.1088/1674-1056/20/1/010204
GENERAL Prev   Next  

Noether's theory of generalized linear nonholonomic mechanical systems

Dong Wen-Shan(董文山)a) ,  Huang Bao-Xin(黄宝歆)a), and Fang Jian-Hui(方建会)b)
a Department of Physics and Electronics Science, University of Weifang, Weifang 261061, China; b Department of Applied Physics, University of Petroleum, Dongying 257061, China
Abstract  By introducing the quasi-symmetry of the infinitesimal transformation of the transformation group Gr, the Noether's theorem and the Noether's inverse theorem for generalized linear nonholonomic mechanical systems are obtained in a generalized compound derivative space. An example is given to illustrate the application of the result.
Keywords:  generalized linear nonholonomic mechanics      symmetry      conserved quantity      Noether's theory  
Received:  07 December 2009      Revised:  28 June 2010      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
Fund: Project supported by the Natural Science Foundation of Weifang University, China (Grant No. 2008Z03).

Cite this article: 

Dong Wen-Shan(董文山) Huang Bao-Xin(黄宝歆), and Fang Jian-Hui(方建会) Noether's theory of generalized linear nonholonomic mechanical systems 2011 Chin. Phys. B 20 010204

[1] Noether A E 1918 wxNachr. Akad. Wiss. G"ottingen Math. Phys. K I II 235
[2] Liu D 1990 wxSci. China A21 1189 (in Chinese)
[3] Mei F X 1993 wxSci. China A23 709 (in Chinese)
[4] Li Z P 1993 wx Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) p1 (in Chinese)
[5] Zhang Y and Mei F X 2000 wx Applied Mathematics and Mechanics 21 59
[6] Zhao Y Y and Mei F X 1999 wxSymmetries and Invariants of Mechanical Systems (Beijing: Science Press) p1 (in Chinese)
[7] Mei F X 1999 wxAppliications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing: Science) p90 (in Chinese)
[8] Zhang H B 2001 wxActa Phys. Sin.50 1837 (in Chinese)
[9] Wu H B and Mei F X 2006 wxActa Phys. Sin.55 3625 (in Chinese)
[10] Lu K, Fang J H, Zhang M J and Wang P 2009 wxActa Phys. Sin.58 4650 (in Chinese)
[11] Zhang Y 2009 wxChin. Phys. B 18 4636
[12] Luo S K 2002 wxActa Phys. Sin. 51 1416 (in Chinese)
[13] Li A M, Jiang J H and Li Z P 2003 wxChin. Phys. 12 467
[14] Li A M, Zhang Y and Li Z P 2004 wxActa Phys. Sin. 53 2816 (in Chinese)
[15] Judith G K and Joseph A S 1965 wxAmer. J. Phys. 33 140
[16] Zhang Y, Shang M and Mei F X 2000 wxChin. Phys. 9 401
[17] Zhang Y 2001 wxActa Phys. Sin. 50 2059 (in Chinese)
[18] Dong W S 2006 wxJournal of Qufu Normal University 32 63 (in Chinese) endfootnotesize
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[7] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[8] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[9] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[10] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[13] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[14] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[15] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
No Suggested Reading articles found!