Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 093102    DOI: 10.1088/1674-1056/19/9/093102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The theoretical study on the potential energy curve for X 3Δ state of TiO molecule

Xu Guo-Liang(徐国亮), Xia Yao-Zheng(夏要争), Jia Guang-Rui(贾光瑞), Liu Yu-Fang(刘玉芳), and Zhang Xian-Zhou(张现周)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  This paper applies the density functional theory method to optimise the structure for X 3Δ state of TiO molecule with the basis sets 6-31G, 6-31++G and 6-311G**. Comparing the attained results with the experiments, it obtains the conclusion that the basis set 6-31++G is most suitable for the optimal structure calculations of X 3Δ state of TiO molecule. The whole potential energy curve for the electronic state is further scanned by using B3P86/6-31++G method for the ground state, then it uses a least square fitted to Murrell–Sorbie functions, at last it calculates the spectroscopic constants and force constants, which are in better agreement with the experimental data.
Keywords:  B3P86      TiO      potential energy function      spectroscopic constants  
Received:  23 July 2009      Revised:  24 December 2009      Accepted manuscript online: 
PACS:  3120  
  3150  
  3620K  
Fund: Project supported by the Basic Research Program of Education Bureau of Henan Province, China (Grant No. 2010A140008), and the National Natural Science Foundation of China (Grant No. 10774039) and the Natural Science Foundation of Henan Province, China (Grant No. 092300410249).

Cite this article: 

Xu Guo-Liang(徐国亮), Xia Yao-Zheng(夏要争), Jia Guang-Rui(贾光瑞), Liu Yu-Fang(刘玉芳), and Zhang Xian-Zhou(张现周) The theoretical study on the potential energy curve for X 3Δ state of TiO molecule 2010 Chin. Phys. B 19 093102

[1] Merrill P W, Deutsch A J and Keenan P C 1962 Astrophys. J. 136 21
[2] White N M and Wing R F 1978 Astrophys. J. 222 209
[3] Morgan W W and Keenan P C 1973 Ann. Rev. Astron. Astrophys. 11 29
[4] Phillips J G 1973 Astrophys. J. 26 313
[5] Phillips J G and Davis S P 1987 Publ. Astron. Soc. Pac. 99 839
[6] Davis S P 1987 Publ. Astron. Soc. Pac. 99 1105
[7] Matsunaga N and Zavitsas A A 2004 J. Chem. Phys. 120 5624
[8] Grandinetti F and Vinciguerra V 2002 Int. J. Mass Spectrometry 216 286
[9] Zivny O and Czemek J 1999 Chem. Phys. Lett. 308 165
[10] Hirst D M 2001 J. Chem. Phys. 115 9320
[11] Horst M A T, Schatz G C and Harding L B 1996 J. Chem. Phys. 105 558
[12] Schenter G K 2002 J. Chem. Phys. 117 6573
[13] Charles W B and Philippe M 1995 Theor. Chim. Acta 90 189
[14] Huber K P and Herzberg G 1978 Molecular Spectra and Molecular Structure. IV Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company)
[15] Murrell J N and Sorbie K S 1974 J. Chem. Soc. Faraday Trans. 70 1552
[16] Zhu Z H and Yu H G 1997 Molecular Structure and Molecular Potential Function (Beijing: Science Press) (in Chinese)
[17] Yan S Y and Zhu Z H 2008 Chin. Phys. B 17 4498
[18] Dunham J L 1932 Phys. Rev. 41 721
[19] Shi D H, Sun J F, Zhu Z L, Ma H and Yang X D 2008 Acta Phys. Sin. 57 165 (in Chinese)
[20] Shi D H, Sun J F, Zhu Z L and Liu Y F 2007 Chin. Phys. 16 2701
[21] Xu G L, Lv W J, Liu Y F, Zhu Z L, Zhang X Z and Sun J F 2008 Chin. Phys. B 17 4481
[22] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrewski V G, Montgomery Jr J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Malick D K, Rabuck A D, Raghavaboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople J A 2003 Gaussian 03, RevisionB.02 (Pittsburgh PA: Gaussian Inc.) endfootnotesize
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[5] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[6] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[7] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[8] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[9] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[10] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[11] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[12] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[13] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[14] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[15] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
No Suggested Reading articles found!