Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 093101    DOI: 10.1088/1674-1056/19/9/093101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron impact excitation rate coefficients of N II ion

Yang Ning-Xuan(杨宁选)a),Dong Chen-Zhong(董晨钟)a)b), Jiang Jun(蒋军) a), and Xie Lu-You(颉录有)a)
a College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China; b Joint Laboratory of Atomic and Molecular Physics, NWNU&IMP CAS, Lanzhou 730070, China
Abstract  This paper calculates the electron impact excitation rate coefficients from the ground term 2s22p2 3P to the excited terms of the 2s22p2, 2s2p3, 2s22p3s, 2s22p3p, and 2s22p3d configurations of N II. In the calculations, multiconfiguration Dirac–Fork wave functions have been applied to describe the target-ion states and relativistic distorted-wave calculation has been performed to generate fine-structure collision strengths. The collision strengths are then averaged over a Maxwellian distribution of electron velocities in order to generate the effective collision strengths. The calculated rate coefficients are compared with available experimental and theoretical data, and some good agreements are found for the outer shell electron excitations. But for the inner shell electron excitations there are still some differences between the present calculations and available experiments.
Keywords:  relativistic distorted-wave method      multiconfiguration Dirac–Fork method      configuration interaction      rate coefficients  
Received:  06 May 2009      Revised:  23 February 2010      Accepted manuscript online: 
PACS:  3120  
  3130  
  3450H  
  3480D  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774122 and 10876028), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070736001), and the Technology and Innovation Program of Northwest Normal University (Grant No. NWNU-KJCXGC-03-21).

Cite this article: 

Yang Ning-Xuan(杨宁选),Dong Chen-Zhong(董晨钟), Jiang Jun(蒋军), and Xie Lu-You(颉录有) Electron impact excitation rate coefficients of N II ion 2010 Chin. Phys. B 19 093101

[1] Hudson C E and Bell K L 2005 Phys. Scr. bf 71 268
[2] Aller L H 1984 Astrophy. and Space Science Library bf112 360
[3] Keenan F P, Crawford F L, Feibelman W A and Aller L H 2001 Astrophys. J. Suppl. 132 103
[4] Czyzak S J, Keyes C D and Aller L H 1986 Astrophys. J. Suppl. 61 159
[5] Saraph H E, Seaton M J and Shemming J 1966 Proc. Phys. Soc. 89 27
[6] Saraph H E and Seaton M J 1974 J. Phys. B 7 L63
[7] Smith K, Conneely M J and Morgan L A 1969 Phys. Rev. 177 196
[8] Henry R J W, Burke P G and Sinfailam A L 1969 Phys. Rev. 178 218
[9] Ormonde S, Smith K, Torres B W and Davies A R 1973 Phys. Rev. A 8 262
[10] Lennon D J and Burke V M 1994 Astron. Astrophys. Suppl. 103 273
[11] Stafford R P, Bell K L, Hibbert A and Wijesundera W P 1994 Mon. Not. R. Astron. Soc. 268 816
[12] Frost R M, Awakowicz P, Summers H P and Badnell N R 1998 J. Appl. Phys. 84 2989
[13] Pindzola M S and Arter S L 1980 Phys. Rev. A 22 898
[14] Hagelstein P L 1986 Phys. Rev. A 34 874
[15] Hagelstein P L 1986 Phys. Rev. A 34 924
[16] Sampson D H and Zhang H L 1989 Phys. Rev. A 40 604
[17] Zhang H L and Sampson D H 1990 Phys. Rev. A 42 5378
[18] Zhang H L and Sampson D H 1993 Phys. Rev. A 47 208
[19] Chen G X 1996 Phys. Rev. A 53 3227
[20] Zemana V, McEachranb R P and Stauffer A D 1998 Eur. Phys. J. D 1 117
[21] Jiang J, Dong C Z, Xie L Y, Wang J G, Yan J and Fritzche S 2007 Chin. Phys. Lett. 24 691
[22] Jiang J, Dong C Z, Xie L Y and Wang J G 2008 Phys. Rev. A 78 022709
[23] Yang N X, Dong C Z and Jiang J 2009 Chin. Phys. Lett. 26 053401
[24] Yang N X, Dong C Z and Jiang J 2009 Chin. Phys. Lett. 26 063401
[25] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 247
[26] Jiang J, Dong C Z, Xie L Y, Zhou X X and Wang J G 2008 J. Phys. B 41 24504
[27] Christopher J F, Sampson D H and Zhang H L 1993 Phys. Rev. A 47 1009
[28] Dong C Z and Fritzche S 2005 Phys. Rev. A 72 012507
[29] Kimura E, Nakazaki S, Eissner W B and Itikawa Y 1999 Astron. Astrophys. Suppl. 139 167
[30] Ralchenko Y, Kramida A E and Reader J 2006 NIST Atomic Spectra Database http://physics. nist. gov/PhysRefData/ASD/index.html
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Accurate all-electron calculation on the vibrational and rotational spectra of ground states for O2 and its ions
Qiao-Xia Wang(王巧霞), Yu-Min Wang(王玉敏), Ri Ma(马日), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(7): 073101.
[3] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[4] Explicitly correlated configuration interaction investigation on low-lying states of SiO+ and SiO
Rui Li(李瑞), Gui-Ying Liang(梁桂颖), Xiao-He Lin(林晓贺), Yu-Hao Zhu(朱宇豪), Shu-Tao Zhao(赵书涛), Yong Wu(吴勇). Chin. Phys. B, 2019, 28(4): 043102.
[5] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
[6] Isotope shift calculations for D lines of stable and short-lived lithium nuclei
Geng-Hua Yu(余庚华), Peng-Yi Zhao(赵朋义), Bing-Ming Xu(徐炳明), Wei Yang(杨维), Xiao-Ling Zhu(朱晓玲). Chin. Phys. B, 2016, 25(11): 113102.
[7] Globally accurate ab initio based potential energy surface of H2O+(X4A")
Song Yu-Zhi (宋玉志), Zhang Yuan (张媛), Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(6): 063101.
[8] Accurate calculation of the potential energy curve and spectroscopic parameters of X2Σ+ state of 12Mg1H
Wu Dong-Lan (伍冬兰), Tan Bin (谭彬), Xie An-Dong (谢安东), Yan Bing (闫冰), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(4): 043401.
[9] Shape effects on the ground-state energy of a three-electronquantum dot
Z. D. Vatansever, S. Sakiroglu, İ. Sokmen. Chin. Phys. B, 2015, 24(12): 127303.
[10] Accurate ab initio-based analytical potential energy function for S21Δg) via extrapolation to the complete basis set limit
Zhang Lu-Lu (张路路), Gao Shou-Bao (高守宝), Meng Qing-Tian (孟庆田), Song Yu-Zhi (宋玉志). Chin. Phys. B, 2015, 24(1): 013101.
[11] Potential energy curves and spectroscopic properties of X2Σ+ and A2Π states of 13C14N
Liao Jian-Wen (廖建文), Yang Chuan-Lu (杨传路). Chin. Phys. B, 2014, 23(7): 073401.
[12] Multi-reference configuration-interaction calculations on multiply charged ions of carbon monosulfide
Yan Bing (闫冰), Zhang Yu-Juan (张玉娟). Chin. Phys. B, 2013, 22(2): 023103.
[13] An ab initio investigation of the low-lying electronic states of BeH
Dong Yan-Ran (董嫣然), Zhang Shu-Dong (张树东), Hou Sheng-Wei (侯圣伟), Cheng Qi-Yuan (程起元 ). Chin. Phys. B, 2012, 21(8): 083104.
[14] Accurate potential energy function and spectroscopic study of the X$^2\Sigma^+$, A$^2\Pi$ and B$^2\Sigma^+$ states of the CP radical
Liu Yu-Fang(刘玉芳) and Jia Yi(贾毅). Chin. Phys. B, 2011, 20(3): 033106.
[15] The theoretical character of the X1$\varSigma$+ and A1$\varSigma$+ states of ScN
Bai Feng-Juan(白凤娟), Yang Chuan-Lu(杨传路), Qian Qi(钱琪), and Zhang Ling(张玲). Chin. Phys. B, 2009, 18(2): 549-552.
No Suggested Reading articles found!