Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077805    DOI: 10.1088/1674-1056/19/7/077805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The fluorescence and thermoluminescence characteristics of $\alpha$-Al2O3:C ceramics

Zhang Bin(张斌)a), Lu Shen-Zhou(陆神洲)a), Zhang Hao-Jia(张浩佳)a), and Yang Qiu-Hong(杨秋红) a)†
School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
Abstract  This paper reports that polycrystalline $\alpha$-Al2O3:C ceramics are fabricated by conventional ceramics process. The excitation, emission spectra, thermoluminescence (TL) and optical stimulated luminescence (OSL) of $\alpha$-Al2O3:C polycrystalline ceramics are investigated. There exists 410nm maximum emission peak which is caused by recombination of an electron with F+ centre to produce an excited F centre. The samples show three clear TL glow peaks at 405, 493 and 610K. The attenuation constant of exponentially decaying fast component ($\tau$1) and slow component($\tau$2) of OSL curve are 8.43s and 41.73s, respectively. Those fluorescence and thermoluminescence characteristics are similar with $\alpha$-Al2O3:C crystal.
Keywords:  $\alpha$-Al2O3:C      ceramics      thermoluminescence      optical stimulated luminescence  
Accepted manuscript online: 
PACS:  78.55.Hx (Other solid inorganic materials)  
  78.60.Kn (Thermoluminescence)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60578041), the Sciences and Technology Commission Foundation of Shanghai, China (Grant No. 08520707300) and the Key Basic Research Project of Science and Technology of Shanghai (Grant No. 09JC1406500).

Cite this article: 

Zhang Bin(张斌), Lu Shen-Zhou(陆神洲), Zhang Hao-Jia(张浩佳), and Yang Qiu-Hong(杨秋红) The fluorescence and thermoluminescence characteristics of $\alpha$-Al2O3:C ceramics 2010 Chin. Phys. B 19 077805

[1] Daniel F, Boyd C A and Sunders D F 1953 Science 117 343
[2] Bos A J J, Vijverberg R N M, Piters T M and McKeever S W S 1992 J. Phys. D 25 1249
[3] Kazachevskaya T V, Arkhangelskaya V A, Ivanov-Kholodnyi G S, Medvedev V S and Razumova T K and Chudaikin A V 1964 Planet. Space Sci. 12 167
[4] Nakajima T, Maruyama Y, Matsuzawa T and Kayano A 1978 Nucl. Instrum. Methods 157 155
[5] Kulkarni M S, Mishra D R and Sharma D N 2007 Nucl. Instr. and Meth. in Phys. Res. B 262 348
[6] Rieke J K, Daniels F J K Rieke and Daniels F 1957 J. Phys. Chem. 51 629
[7] Mehta and Sengupta S 1976 Health Phys. 31 176
[8] Osvay and Biro T 1980 Nucl. Instrum. Methods 175 60
[9] Lapraz D, Iacconi P, Daviller D and Guilhot B 1991 Phys. Stat. Solidi (a) 126 501
[10] Akselrod M S, Kortov V S, Kravetsky D J and Gotlib V I 1990 Radiat. Prot. Dosimetry 32 15
[11] Akselrod M S, Kortov V S and Gorelova E A 1993 Radiat. Prot. Dosim. 47 159
[12] Zhang B, Zhang H J, Yang Q H and Lu S Z 2010 Acta Phys. Sin. 59 1333 (in Chinese)
[13] Yang X B, Li H J, Cheng Y, Tang Q, Su L B and Xu J 2008 J. Crystal Growth 310 3800
[14] Zhang C X, Lin L B, Liang B L, Tang Q, Li D P and Luo D L 2004 Acta Phys. Sin. 53 291 (in Chinese)
[15] Lee K H and Crawford J H 1979 Phys. Rev. B 19 3217
[16] Evans B D and Stapelbroek M 1978 Phys. Rev. B 18 7089
[17] Yang X B, Li H J, Bi Q Y, Cheng Y, Tang Q, Qian X B and Xu J 2009 J. Lumin. 129 566
[18] Yang X B, Li H J, Xu J, Cheng Y, Su L B and Tang Q 2008 Acta Phys. Sin. 57 7900 (in Chinese) endfootnotesize
[1] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[2] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[3] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[4] Properties of B4C-TiB2 ceramics prepared by spark plasma sintering
Jingzhe Fan(范静哲), Weixia Shen(沈维霞), Zhuangfei Zhang(张壮飞, Chao Fang(房超), Yuewen Zhang(张跃文), Liangchao Chen(陈良超), Qianqian Wang(王倩倩), Biao Wan(万彪), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(3): 038105.
[5] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[6] Structural and dielectric properties of giant dielectric Na1/2Sm1/2Cu3Ti4O12 ceramics prepared by reactive sintering methods
H Mahfoz Kotb. Chin. Phys. B, 2019, 28(9): 098202.
[7] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[8] Wettability of Si and Al-12Si alloy on Pd-implanted 6H-SiC
Ting-Ting Wang(汪婷婷), Gui-Wu Liu(刘桂武), Zhi-Kun Huang(黄志坤), Xiang-Zhao Zhang(张相召), Zi-Wei Xu(徐紫巍), Guan-Jun Qiao(乔冠军). Chin. Phys. B, 2018, 27(4): 046101.
[9] Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics
Yong Chen(陈勇), Simin Xue(薛思敏), Qian Luo(骆迁), Huyin Su(苏虎音), Qi Chen(陈琪), Zhen Huang(黄镇), Linfang Xu(徐玲芳), Wanqiang Cao(曹万强), Zhaoxiang Huang(黄兆祥). Chin. Phys. B, 2017, 26(4): 047701.
[10] CuO added Pb0.92Sr0.06Ba0.02(Mg1/3Nb2/3)0.25(Ti0.53Zr0.47)0.75O3 ceramics sintered with Ag electrodes at 900℃ for multilayer piezoelectric actuator
Muhammad Adnan Qaiser, Ahmad Hussain, Yuqing Xu(徐玉青), Yaojin Wang(汪尧进), Yiping Wang(王一平), Ying Yang(杨颖), Guoliang Yuan(袁国亮). Chin. Phys. B, 2017, 26(3): 037702.
[11] Singular variation property of elastic constants of piezoelectric ceramics shunted to negative capacitance
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Qi-Hu Li(李启虎). Chin. Phys. B, 2017, 26(12): 127702.
[12] Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature
Hui Jin(金慧), Yong Li(李勇), Mou-Sheng Song(宋谋胜), Lin Chen(陈琳), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2016, 25(7): 078202.
[13] First-principle investigation on the thermodynamics of X2N2O (X= C, Si, Ge) compounds
Qing-Yun Xiong(熊青云), Qi-Xia Shen(沈启霞), Rui-Zi Li(李蕊子), Jiang Shen(申江), Fu-Yang Tian(田付阳). Chin. Phys. B, 2016, 25(2): 026501.
[14] Electrical and dielectric properties of Na1/2La1/2Cu3Ti4O12 ceramics prepared by high energy ball-milling and conventional sintering
H Mahfoz Kotb, Mohamad M Ahmad. Chin. Phys. B, 2016, 25(12): 128201.
[15] Influences of spark plasma sintering temperature on the microstructures and thermoelectric properties of (Sr0.95Gd0.05)TiO3 ceramics
Li Liang-Liang (李亮亮), Qin Xiao-Ying (秦晓英), Liu Yong-Fei (刘永飞), Liu Quan-Zhen (刘全桢). Chin. Phys. B, 2015, 24(6): 067202.
No Suggested Reading articles found!