Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 074209    DOI: 10.1088/1674-1056/21/7/074209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-violet and mid-infrared continuum generation by cross-phase modulation between red-shifted solitons and blue-shifted dispersive waves in a photonic crystal fiber

Shen Xiang-Wei(申向伟)a)†, Yuan Jin-Hui(苑金辉)a), Sang Xin-Zhu(桑新柱)a), Yu Chong-Xiu(余重秀)a), Rao Lan(饶岚)b), Xin Xiang-Jun(忻向军)b), Xia Min(夏民)a), Han Ying(韩颖)c), Xia Chang-Ming(夏长明)c), and Hou Lan-Tian(侯蓝田)c)
a State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts & Telecommunications, Beijing 100876, China;
b School of Information and Communication Engineering, Beijing University of Posts & Telecommunications, Beijing 100876, China;
c Institute of Infrared Optical Fibers & Sensors, Qinhuangdao 066004, China
Abstract  Using the photonic crystal fiber with the zero dispersion wavelength of the fundamental mode at 780 nm designed and fabricated in our lab, the ultra-violet and mid-infrared continua are generated by cross-phase modulation between red-shift solitons and blue-shift dispersive waves. The dependences of continuum on the pump power and wavelength are investigated. With the pump working at 820 nm, when the pump power increases from 300 to 500 mW, the bandwidths of ultra-violet and mid-infrared continua change from 80 to 140 nm and 100 to 200 nm, respectively. The wavelength of ultra-violet continuum is below 246 nm, and the wavelength of mid-infrared continuum exceeds 2500 nm. Moreover, the influences of pump power on wavelength and conversion efficiency of different parts of continua are also demonstrated.
Keywords:  photonic crystal fiber (PCF)      ultra-violet and mid-infrared continuum      fundamental mode      soliton self-frequency shift  
Received:  09 November 2011      Revised:  14 December 2011      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.65.-k (Nonlinear optics)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  78.47.nj (Four-wave mixing spectroscopy)  
Fund: Project supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2011RC0309 and 2011RC008), and the Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications, China (Grant No. CX201023).
Corresponding Authors:  Shen Xiang-Wei     E-mail:  shenxiangwei03@gmail.com

Cite this article: 

Shen Xiang-Wei(申向伟), Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Rao Lan(饶岚), Xin Xiang-Jun(忻向军), Xia Min(夏民), Han Ying(韩颖), Xia Chang-Ming(夏长明), and Hou Lan-Tian(侯蓝田) Ultra-violet and mid-infrared continuum generation by cross-phase modulation between red-shifted solitons and blue-shifted dispersive waves in a photonic crystal fiber 2012 Chin. Phys. B 21 074209

[1] Dudley J M, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
[2] Yuan J H, Sang X Z, Yu C X, Xin X J, Shen X W, Zhang J L, Zhou G Y, Li S G and Hou L T 2011 Chin. Phys. B 20 054210
[3] Wang Y B, Xiong C L, Hou J, Lu Q S, Peng Y and Chen Z L 2011 Acta Phys. Sin. 60 014201 (in Chinese)
[4] Chang G Q, Norris T B and Winful H G 2003 Opt. Lett. 28 546
[5] Kelkar P V, Coppinger F, Bhushan A S and Jalali B 1999 Electron. Lett. 35 1661
[6] Jasapara J, Her T H, Bise R, Windeler R and DiGiovanni D J 2003 J. Opt. Soc. Am. B 20 1611
[7] Smirnov S V, Ania-Castanon J D, Ellingham T J, Kobtsev S M, Kukarin S and Turitsyn S K 2006 Opt. Fiber Technol. 12 122
[8] Yan H F, Yu Z Y, Tian H D, Liu Y M and Han L H 2010 Acta Phys. Sin. 59 3273 (in Chinese)
[9] Hartl J, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608
[10] Kolesik M and Moloney J V 2004 Phys. Rev. E 70 036604
[11] Liu B W, Hu M L, Fang X H, Li Y F and Chai L 2008 Opt. Express 16 14987
[12] Agrawal G P 2001 Nonlinear Fiber Optics (3rd ed.) (New York: San Diego) pp. 469--475
[13] Nishizawa N and Goto T 2001 IEEE J. Sel. Topics Quantum Electron. 7 518.
[14] Nishizawa N, Ito Y and Goto T 2002 IEEE Photon. Technol. Lett. 14 983
[15] Knight J C 2003 Nature 424 847
[16] Yuan J H, Sang X Z, Yu C X, Xin X J, Li S G, Zhou G Y and Hou L T 2010 Chin. Phys. B 19 074218
[17] Yuan J H, Sang X Z, Yu C X, Li S G, Zhou G Y and Hou L T 2010 IEEE J. Quantum Electron. 46 728
[18] Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G and Hou L T 2011 J. Lightwave Technol. 29 2920
[19] Husakou A V and Herrmann J 2001 Phys. Rev. Lett. 87 203901
[20] Tran T X and Biancalana F 2009 Phys. Rev. A 79 065802
[21] Peng J H, Sokolov A V, Benabid F, Biancalana F, Light P S, Couny F and Roberts P J 2010 Phys. Rev. A 81 031803(R)
[22] Bache M, Bang O, Zhou B B, Moses J and Wise F W 2010 Phys. Rev. A 82 063806
[23] Baiz C R and Kubarych K J 2011 Opt. Lett. 36 187
[24] Yuan J H, Sang X Z, Yu C X, Han Y, Zhou G Y, Li S G and Hou L T 2011 IEEE Photon. Technol. Lett. 13 786
[25] Gosnell T R, Taylor A J and Greene D P 1990 Opt. Lett. 15 130
[26] Domachuk P, Wolchover N A, Golomb M C and Wang A 2008 Opt. Express 16 7161
[27] Bartula R J, Hagen C L, Walewski J W and Sanders S T 2006 OSA/LACSEA ThB2
[28] Hadley G R 1998 J. Lightwave Technol. 16 134
[1] Scaling of Yb-doped photonic crystal fiber to 200 μm core diameter for high beam quality laser output
Kuo Meng(孟阔), Lian-Qing Zhu(祝连庆), Fei Luo(骆飞). Chin. Phys. B, 2017, 26(5): 054212.
[2] Single fundamental mode photonic crystal VCSEL with high power and low threshold current optimized by modal loss analysis
Yi-Yang Xie(解意洋), Qiang Kan(阚强), Chen Xu(徐晨), Kun Xu(许坤), Hong-Da Chen(陈弘达). Chin. Phys. B, 2017, 26(1): 014203.
[3] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[4] Strip silicon waveguide for code synchronization in all-optical analog-to-digital conversion based on a lumped time-delay compensation scheme
Sha Li(李莎), Zhi-Guo Shi(石志国), Zhe Kang(康哲), Chong-Xiu Yu(余重秀), Jian-Ping Wang(王建萍). Chin. Phys. B, 2016, 25(4): 044210.
[5] Theoretical simulation of a novel birefringent photonic crystal fiber with surface plasmon resonance around 1300 nm
Duanming Li(李端明), Guiyao Zhou(周桂耀). Chin. Phys. B, 2016, 25(3): 034209.
[6] Optimizational 6-bit all-optical quantization with soliton self-frequency shift and pre-chirp spectral compression techniques based on photonic crystal fiber
Li Sha (李莎), Wang Jian-Ping (王建萍), Kang Zhe (康哲), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2015, 24(8): 084212.
[7] Code synchronization based on lumped time-delay compensation scheme with a linearly chirped fiber Bragg grating in all-optical analog-to-digital conversion
Wang Tao (王涛), Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Tian Ye (田野), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2014, 23(10): 104212.
[8] Six-bit all-optical quantization using photonic crystal fiber with soliton self-frequency shift and pre-chirp spectral compression techniques
Kang Zhe (康哲), Yuan Jin-Hui (苑金辉), Li Sha (李莎), Xie Song-Lin (解松霖), Yan Bin-Bin (颜玢玢), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀). Chin. Phys. B, 2013, 22(11): 114211.
[9] Highly efficient Cherenkov radiation generation in the irregular point of hollow-core photonic crystal fiber
Shen Xiang-Wei (申向伟), Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Rao Lan (饶兰), Xia Min (夏民), Han Ying (韩颖), Xia Chang-Ming (夏长明), Hou Lan-Tian (侯蓝田 ). Chin. Phys. B, 2012, 21(11): 114102.
[10] Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2011, 20(5): 054210.
[11] Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Li Shu-Guang (李曙光), Zhou Gui-Yao (周桂耀), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2010, 19(7): 074218.
[12] A dark hollow beam from a selectively liquid-filled photonic crystal fibre
Zhang Mei-Yan(张美艳), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Fu Bo(付博), and Zhang Lei(张磊). Chin. Phys. B, 2010, 19(4): 047103.
[13] Influence of spherical aberrations on fundamental mode beam quality under different laser resonators
Xiang Zhen(项震), Hu Miao(胡淼), Ge Jian-Hong(葛剑虹), Zhao Zhi-Gang(赵智刚), Wang Sha(汪莎), Liu Chong(刘崇), and Chen Jun(陈军). Chin. Phys. B, 2009, 18(7): 2806-2815.
No Suggested Reading articles found!