|
|
Hopf bifurcation analysis of Chen circuit with direct time delay feedback |
Ren Hai-Peng(任海鹏), Li Wen-Chao(李文超), and Liu Ding(刘丁) |
School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China |
|
|
Abstract Direct time delay feedback can make non-chaotic Chen circuit chaotic. The chaotic Chen circuit with direct time delay feedback possesses rich and complex dynamical behaviours. To reach a deep and clear understanding of the dynamics of such circuits described by delay differential equations, Hopf bifurcation in the circuit is analysed using the Hopf bifurcation theory and the central manifold theorem in this paper. Bifurcation points and bifurcation directions are derived in detail, which prove to be consistent with the previous bifurcation diagram. Numerical simulations and experimental results are given to verify the theoretical analysis. Hopf bifurcation analysis can explain and predict the periodical orbit (oscillation) in Chen circuit with direct time delay feedback. Bifurcation boundaries are derived using the Hopf bifurcation analysis, which will be helpful for determining the parameters in the stabilisation of the originally chaotic circuit.
|
Received: 02 September 2008
Revised: 30 August 2009
Accepted manuscript online:
|
PACS:
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
02.30.Oz
|
(Bifurcation theory)
|
|
84.30.Bv
|
(Circuit theory)
|
|
02.30.Hq
|
(Ordinary differential equations)
|
|
Fund: Project supported in part by the
National Natural Science Foundation of China (Grant No.~60804040)
and Fok Ying-Tong Education Foundation for Young Teacher (Grant
No.~111065). |
Cite this article:
Ren Hai-Peng(任海鹏), Li Wen-Chao(李文超), and Liu Ding(刘丁) Hopf bifurcation analysis of Chen circuit with direct time delay feedback 2010 Chin. Phys. B 19 030511
|
[1] |
Lorenz E N 1963 J. Atmos. Sci. 20 130
|
[2] |
Stwart I 2000 Nature 406 948
|
[3] |
R?ssler O E 1976 Phys. Lett. A 57 397
|
[4] |
Chua L O, Wu C W, Huang A S and Zhong G Q 1993 IEEE Trans. on CAS I 40 732
|
[5] |
Chua L O, Wu C W, Huang A S and Zhong G Q 1993 IEEE Trans. on CAS I 40 745
|
[6] |
Chen G and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
|
[7] |
Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
|
[8] |
Chen G and Dong X 1992 Int. J. Bifur. Chaos 2 407
|
[9] |
Pyragas K 1992 Phys. Lett. A 170421
|
[10] |
Ren H P and Liu D 2002 Acta Phys. Sin. 51 982 (in Chinese)
|
[11] |
Gao X and Yu J B 2005 Chin. Phys. 14 908
|
[12] |
Huijberts H 2006 IEEE Trans. on CAS I 53 2246
|
[13] |
Ren H P and Liu D 2006 IEEE Trans. on CAS II 51 55
|
[14] |
Sakamoto N 2006 Phys. Lett. A 365 316
|
[15] |
Yan L, Zou J and Chen Z G 2006 Int. J. Bifur. Chaos 16 1089
|
[16] |
Zhan L and Wang D S 2007 Acta Phys. Sin. 56 91 (in Chinese)
|
[17] |
Zhu C and Chen Z 2008 Phys. Lett. A 372 4033
|
[18] |
Chen G and Lai D 1998 Int. J. Bifur. Chaos 8 1585
|
[19] |
Wang X F and Chen G 1999 Int. J. Bifur. Chaos 9 1435
|
[20] |
Wang X F, Chen G and Yu X 2000 Chaos 10 771
|
[21] |
Tang K S, Man K F, Zhong G Q and Chen G 2000 IEEE Trans. on IEEE Trans. on CAS I 48 636
|
[22] |
Lü J H, Zhou T S, Chen G and Yang X 2002 Chaos 12 344
|
[23] |
Lü J, Yu X and Chen G 2003 IEEE Trans. on CAS I 50 198
|
[24] |
Ren H P and Liu D 2003 Control Theory and Applications 20 768 (in Chinese)
|
[25] |
Ge Z M, Cheng J W and Chen Y S 2004 Chaos, Solitons and Fractals 22 1165
|
[26] |
Morel C, Bourcerie M and Francois C B 2005 Chaos, Solitons and Fractals 26 541
|
[27] |
Yu S, Lü J, Leung H and Chen G 2005 IEEE Trans. on CAS I 52 1459
|
[28] |
Lü J, Yu S, Leung H and Chen G 2006 IEEE Trans. on CAS I 53 149
|
[29] |
Ren H P, Liu D and Han C 2006 Acta Phys. Sin. 55 2694 (in Chinese)
|
[30] |
Wu X, Lu J, Herbert H C Iu and Wong S C 2007 Chaos, Solitons and Fractals 31 811
|
[31] |
Soong C Y and Huang W T 2007 Phys. Rev. E 75 036206
|
[32] |
Ruiz P, Gutiérrez J M and Güémez J 2008 Chaos, Solitons and Fractals 36 635
|
[33] |
Billini A, Rovatti R, Setti G and Tassoni C 2001 Proc. IEEE IECON 1 1527
|
[34] |
Abel and Schwarz W 2002 Proc. IEEE 90 691
|
[35] |
Chau K T, Ye S, Gao Y and Chen J H 2004 Proc. IEEE IAS 4 1874
|
[36] |
Zhang Z and Chen G 2005 In Proceeding of European Conference on Circuits Theory and Design p225
|
[37] |
Ottino J M, Muzzio F J, Tjahjadi M, Franjione J G, Jana S C and Kusch H A1992 Science 257 754
|
[38] |
Pareek N K, Patidar V, Patidar V and Sud K K 2003 Phys.Lett. A 309 75
|
[39] |
Wu X, Hu H and Zhang B 2004 Chaos, Solitons and Fractals 22 367
|
[40] |
Shunji I and Narikiyo J 1998 Journal of the Japan Society for PrecisionEngineering 64 748
|
[41] |
Long Y, Yang C and Wang C L 2000 Engineering Science of China 2 76
|
[42] |
Wang Z and Chau K T 2008 Chaos, Solitons and Fractals 36 694
|
[43] |
Flores B C, Solis E A and Thomas G 2003 IEE Proc.-Radar Sonar Navig 150 313
|
[44] |
Vijayaraghavan V and Henry L 2005 IEEE Signal Processing Letters 12 528
|
[45] |
Aihara K 2002 Proc. IEEE 90 919
|
[46] |
Horio Y, Taniguchi T and Aihara K 2005 Neurocomputing 64 447
|
[47] |
Ueta T and Chen G 2000 Int. J. Bifurc. Chaos 10 1917
|
[48] |
Li T, Chen G and Tang Y 2004 Chaos, Solitons and Fractals 19 1269
|
[49] |
Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 659
|
[50] |
Lü J and Chen G 2002 Int. J. Bifurc. Chaos 12 1001
|
[51] |
Liu C, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031
|
[52] |
Zhou W, Xu Y, Lu H and Pan L 2008 Phys. Lett. A372 5773
|
[53] |
Wu W, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B17 2420
|
[54] |
Han F, Wang Y, Yu X and Feng Y 2004 Chaos, Solitons and Fractals 21 69
|
[55] |
Zhou X, Wu Y, Li Y and Wei Z 2008 Chaos, Solitons and Fractals 36 1385
|
[56] |
Fallahi K, Raoufi R and Khoshbin H 2008 Communicationsin Nonlinear Science and Numerical Simulation 13 763
|
[57] |
Sprott J C 2007 Phys. Lett. A 366 397
|
[58] |
Rosenstein M T, Collins J J and Luca C J D 1993 Physica D 65 117
|
[59] |
Balanov A G, Janson N B and Sch?ll E 2005 Phys. Rev. E 71 016222
|
[60] |
Hassard B, Kazarinoff N and Wan Y 1981 Theory and Application of Hopf Bifurcation (Cambridge: Cambridge UniversityPress) p23
|
[61] |
Song Y L and Wei J J 2004 Chaos, Solitons and Fractals 22 75
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|