Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 116201    DOI: 10.1088/1674-1056/19/11/116201
RAPID COMMUNICATION Prev   Next  

Brillouin scattering study on elastic and piezoelectric properties of laser irradiated ZnO single crystals

Liu Jie(刘洁) and Jiang Yi-Jian(蒋毅坚)
Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
Abstract  Brillouin light scattering technique can be successfully used to determine the whole set of elastic and piezoelectric constants of a ZnO single crystal irradiated by different laser energy densities, into a micron range (radiation layer thickness). It is found that the scattering intensity, the linewidth and the Brillouin scattering shift of acoustic phonons are all strongly dependent on laser energy density. Based on the sound propagation equations and these results, the directional dependences of the compressional and shear moduli of the irradiated ZnO sample in the (001) plane are investigated. It is found that under an appropriate laser condition, 248 nm KrF excimer laser irradiation can significantly improve the surface quality and increase the elastic properties of ZnO single crystal. This procedure has potential applications in the fabrication of ZnO-based surface acoustic wave and optic-electronic devices.
Keywords:  laser irradiation      ZnO single crystal      Brillouin scattering  
Received:  17 May 2010      Revised:  13 July 2010      Accepted manuscript online: 
PACS:  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  61.82.Fk (Semiconductors)  
  62.20.D- (Elasticity)  
  77.65.Bn (Piezoelectric and electrostrictive constants)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974009).

Cite this article: 

Liu Jie(刘洁) and Jiang Yi-Jian(蒋毅坚) Brillouin scattering study on elastic and piezoelectric properties of laser irradiated ZnO single crystals 2010 Chin. Phys. B 19 116201

[1] Bagnall D M, Chen Y F, Zhu Z, Yao T, Shen M Y and Goto T 1998 Appl. Phys. Lett. 73 1038
[2] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. 79 988
[3] Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403
[4] Tang Z K, Wong G K L, Yu P, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1998 Appl. Phys. Lett. 72 3270
[5] Carlotti G, Fioretto D, Palmieri L, Socino G, Verdini L and Verona E 1991 IEEE Trans. Ultrasonics, Ferroelectrics, and Freouency Control 38 56
[6] Xu Z K, Siu G G, Liu Y L and Luo H S 2007 J. Appl. Phys. 101 026113
[7] Kobiakov I B 1980 Solid State Commun. 35 305
[8] Bateman T B 1962 J. Appl. Phys. 33 3309
[9] Azuhata T, Takesada M, Yagi T, Shikanai A, Chichibu SF, Torii K, Nakamura A, Sota T, Cantwell G, Eason D B and Litton C W 2003 J. Appl. Phys. 94 968
[10] Godieski M, Goldys E M, Phillips M R, Langer R and Barski A 1998 Appl. Phys. Lett. 73 3686
[11] Ho Won Jang, Jong Kyu Kim, Lee Jong-Lam, Schroeder J and Sands T 2003 Appl. Phys. Lett. 82 580
[12] Hong R J, Wei C Y, He H B, Fan Z X and Shao J D 2005 Thin Solid Films 485 262
[13] Ji Y L and Jiang Y J 2006 Appl. Phys. Lett. 89 1103
[14] Tang Z, Daofan Z and Huaguang Y 1997 J. Synth. Cryst. 26 377
[15] Dieulesaint E and Royer D 1980 Elastic Waves in Solids (New York: Wiley) p244
[16] Smith R T and Welsh F S 1971 J. Appl. Phys. 42 2219 endfootnotesize
[1] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[2] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[3] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[4] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[5] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
[6] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[7] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[8] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[9] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[10] Gastroscopy-conjugated photoacoustic and ultrasonic dual-mode imaging for detection of submucosal gastric cancer: in vitro study
Huaqin Wu(吴华钦), Haiyang Song(宋海洋), Yudian Huang(黄玉钿), Zhifang Li(李志芳), Shulian Wu(吴淑莲), Xiaoman Zhang(章小曼), Hui Li(李晖). Chin. Phys. B, 2020, 29(6): 064205.
[11] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[12] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[13] Elastic, dielectric, and piezoelectric characterization of 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal by Brillouin scattering
Fang Shao-Xi (方绍熙), Tang Dong-Yun (汤冬云), Chen Zhao-Ming (陈昭明), Zhang Hua (张华), Liu Yu-Long (刘玉龙). Chin. Phys. B, 2015, 24(2): 027802.
[14] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[15] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
No Suggested Reading articles found!