Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110504    DOI: 10.1088/1674-1056/19/11/110504
RAPID COMMUNICATION Prev   Next  

Enhancement of scale-free network attack tolerance

Qu Ze-Hui(瞿泽辉)a)b)†, Wang Pu(王璞) d), Song Chao-Ming(宋朝鸣)b)c), and Qin Zhi-Guang(秦志光)a)
a School of Computer Science and Engineering, University of Electric Science & Technology of China, Chengdu 610054, China; b Center for Complex Network Research (CCNR), Department of Physics, Biology and Computer Science, Northeastern University, Boston, MA 02115, USA; c Center for Cancer Systems Biology, Dana Farber Cancer Institute, Harvard University, Boston, Massachusetts 02115, USA; d Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA
Abstract  Despite the large size of most communication and transportation systems, there are short paths between nodes in these networks which guarantee the efficient information, data and passenger delivery; furthermore these networks have a surprising tolerance under random errors thanks to their inherent scale-free topology. However, their scale-free topology also makes them fragile under intentional attacks, leaving us a challenge on how to improve the network robustness against intentional attacks without losing their strong tolerance under random errors and high message and passenger delivering capacity. Here we propose two methods (SL method and SH method) to enhance scale-free network's tolerance under attack in different conditions.
Keywords:  scale-free network      robustness spatial limited network      attack tolerance  
Received:  06 July 2010      Revised:  12 July 2010      Accepted manuscript online: 
PACS:  89.20.Hh (World Wide Web, Internet)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported in part by the China Scholarships Council (Grant No. 2007103794), the Defence Threat Reduction Agency Award HDTRA1-08-1-0027, the James S. McDonnell Foundation 21st Century Initiative in Studying Complex Systems, the National Science Foundation within the DDDAS (CNS-0540348), ITR (DMR-0426737) and IIS-0513650 programs, the US Office of Naval Research Award N00014-07-C, the National Natural Science Foundation of China (Grant Nos. 80678605 and 60903157), and the National High Technology Research and Development Program of China (Grant No. 2009AA01Z422).

Cite this article: 

Qu Ze-Hui(瞿泽辉), Wang Pu(王璞), Song Chao-Ming(宋朝鸣), and Qin Zhi-Guang(秦志光) Enhancement of scale-free network attack tolerance 2010 Chin. Phys. B 19 110504

[1] Onnela J P, Saramaki J, Hyvonen J, Szabo G, Lazer D, Kaski D, Kertesz J and Barabási A L 2007 Proceedings of the National Academy of Sciences 104 7332
[2] Wang P, Gonzalez M C, Hidalgo C A and Barabási A L 2009 Science 324 1071
[3] Hu H, Myers S, Colizza V and Vespignani A 2009 Proceedings of the National Academy of Sciences 106 1318
[4] Yook S H, Jeong H and Barabási A 2002 Proceedings of the National Academy of Sciences 99 13382
[5] Park J and Newman M E J 2003 Phys. Rev. E 68 026112
[6] Pastor-Satorras R, Vázquez A and Vespignani A 2001 Phys. Rev. Lett. 87 258701
[7] Albert R, Jeong H and Barabási A L 1999 Nature 401 130
[8] Colizza V, Barrat A, Barth'elemy M and Vespignani A 2006 Proceedings of the National Academy of Sciences 103 2015
[9] Li C J and Chen G R 2006 Modelling of Weighted Evolving Networks with Community Structures 370 869
[10] Lewis F L Wireless Sensor Networks. Smart Environments: Technologies, Protocols, and Applications (New York: Wiley Interscience)
[11] Wu X J and Lu H T 2010 Chin. Phys. B 19 070511
[12] Duncan W, Strogatz J and Steven H 1998 Nature 393 440
[13] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[14] Barabási A L and Albert R 1999 Science 286 509
[15] Wang X H, Jiao L C and Wu J S 2001 Chin. Phys. B 19 020501
[16] Pu C L and Pei W J 2010 Acta Phys. Sin. 59 3841 (in Chinese)
[17] Callaway D S, Newman M E J, Strogatz S H and Watts D H 2000 Phys. Rev. Lett. 85 5468
[18] Palla G, Barabási A L and Vicsek T 2007 Nature 446 664
[19] Guo J L and Wang L N 2007 Acta Phys. Sin. 56 5635 (in Chinese)
[20] Krapivsky P L and Redner S 2001 Phys. Rev. E 63 066123
[21] Li T, Pei W J and Wang S P 2009 Acta Phys. Sin. 58 5903 (in Chinese)
[22] Li C J and Maini P K 2005 J. Phys. A 38 9741
[23] Feng C F, Guan J Y, Wu Z X and Wang Y H 2010 Chin. Phys. B 19 060203
[24] Albert R, Jeong H and Barabási A L 2000 Nature 406 482 endfootnotesize
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[3] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[4] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[5] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[6] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[7] Evolution of IPv6 Internet topology with unusual sudden changes
Ai Jun (艾均), Zhao Hai (赵海), Kathleen M. Carleyb, Su Zhan (苏湛), Li Hui (李辉). Chin. Phys. B, 2013, 22(7): 078902.
[8] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
[9] An evolving network model with modular growth
Zou Zhi-Yun(邹志云), Liu Peng(刘鹏), Lei Li(雷立), and Gao Jian-Zhi(高健智) . Chin. Phys. B, 2012, 21(2): 028904.
[10] Epidemic spreading on a scale-free network with awareness
Lu Yan-Ling (鲁延玲), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉). Chin. Phys. B, 2012, 21(10): 100207.
[11] Epidemic spreading in scale-free networks including the effect of individual vigilance
Gong Yong-Wang(巩永旺), Song Yu-Rong(宋玉蓉), and Jiang Guo-Ping(蒋国平) . Chin. Phys. B, 2012, 21(1): 010205.
[12] Integrated systemic inflammatory response syndrome epidemic model in scale-free networks
Cai Shao-Hong(蔡绍洪), Zhang Da-Min(张达敏), Gong Guang-Wu(龚光武), and Guo Chang-Rui(郭长睿) . Chin. Phys. B, 2011, 20(9): 090503.
[13] Generalized minimum information path routing strategy on scale-free networks
Zhou Si-Yuan(周思源), Wang Kai(王开), Zhang Yi-Feng(张毅锋) Pei Wen-Jiang(裴文江) Pu Cun-Lai(濮存来), and Li Wei(李微) . Chin. Phys. B, 2011, 20(8): 080501.
[14] Poor–rich demarcation of Matthew effect on scale-free systems and its application
Yan Dong(闫栋), Dong Ming(董明), Abdelaziz Bouras, and Yu Sui-Ran(于随然) . Chin. Phys. B, 2011, 20(4): 040205.
[15] Degree and connectivity of the Internet's scale-free topology
Zhang Lian-Ming(张连明), Deng Xiao-Heng(邓晓衡), Yu Jian-Ping(余建平), and Wu Xiang-Sheng(伍祥生) . Chin. Phys. B, 2011, 20(4): 048902.
No Suggested Reading articles found!