Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 107702    DOI: 10.1088/1674-1056/19/10/107702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Polarization fatigue in poly(vinylidene fluoride (78%)-trifluoroethylene (22%)) ferroelectric thin films: a pulse train study

Luo Xiao-Ya(罗晓雅), Zhang Ji-Hao(张吉皓), Yan Xue-Jian(严学俭), and Zhu Guo-Dong(朱国栋)
Department of Materials Science, Fudan University, 220 Handan Road, Shanghai 200433, China
Abstract  This paper investigates the influences of polarization fatigue on remanent polarization and switching time by pulse train measurements in ferroelectric poly(vinylidene fluoride (78%) and trifluoroethylene (22%)) thin films. Fatigue was carried out by a series of bipolar switching pulses with constant pulse width (on-time) and various interval times between pulses (off-time). The experimental observations indicated that the off-time period showed no obvious influence on fatigue rate and the switching time increased with the increase of fatigue cycles. The origination of these phenomena was discussed according to the charge injection model.
Keywords:  ferroelectric polymer      polarization fatigue      switching time      charge transfer  
Received:  10 March 2010      Revised:  21 April 2010      Accepted manuscript online: 
PACS:  73.61.Ph (Polymers; organic compounds)  
  77.22.Ej (Polarization and depolarization)  
  77.55.+f  
  77.80.Fm (Switching phenomena)  
  77.84.Jd (Polymers; organic compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10804020) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200802461088).

Cite this article: 

Luo Xiao-Ya(罗晓雅), Zhang Ji-Hao(张吉皓), Yan Xue-Jian(严学俭), and Zhu Guo-Dong(朱国栋) Polarization fatigue in poly(vinylidene fluoride (78%)-trifluoroethylene (22%)) ferroelectric thin films: a pulse train study 2010 Chin. Phys. B 19 107702

[1] Ducharme S, Reece T J, Othon C M and Rannow R K 2005 IEEE Trans. Device Mater. Reliab. 5 720
[2] Ling Q D, Liaw D J, Zhu C X, Chan D S H, Kang E T and Neoh K G 2008 Prog. Polym. Sci. 33 917
[3] Li J C, Wang C L and Zhong W L 2004 Chin. Phys. 13 344
[4] Nguyen C A, Wang J L, Chen L, Mhaisalkar S G and Lee P S 2009 Org. Electron. 10 145
[5] Lee K H, Lee G, Lee K, Oh M S and Im S 2009 Appl. Phys. Lett. 94 093304
[6] Nguyen C A, Mhaisalkar S G, Ma J and Lee P S 2008 Org. Electron. 9 1087
[7] Choi W J, Noh S H, Hwang D K, Ch J M, Jang S J, Kim E and Im S 2008 Electrochem. Solid-State Lett. 11 H47
[8] Lou X 2009 J. Appl. Phys. 105 024101
[9] Sakai S and Ilangovan R 2004 IEEE Electron Device Lett. 25 369
[10] Guy I L, Limbong A, Zheng Z and Das-Gupta D K 2000 IEEE Trans. Dielectr. Electr. Insul. 7 489
[11] Fang F, Yang W and Zhang M Z 2007 J. Appl. Phys. 101 044902
[12] Nozaki S, Ishida K, Matsumoto A, Horie S, Kuwajima S, Yamada H and Matsushige K 2008 Thin Solid Films 516 2450
[13] Horie S, Ishida K, Kuwajima S, Kobayashi K, Yamada H and Matsushge K 2008 Jpn. J. Appl. Phys. 47 1259
[14] Zhu G D, Zeng Z G, Zhang L and Yan X J 2006 Appl. Phys. Lett. 89 102905
[15] Zhu G D, Zeng Z G, Zhang L and Yan X J 2008 J. Appl. Polym. Sci. 107 3945
[16] Zeng Z G, Zhu G D, Zhang L and Yan X J 2009 Chin. J. Polym. Sci. 27 479
[17] Zeng Z G, Zhu G D, Liu R, Zhang Q and Yan X J 2008 Microelectron. Eng. 85 2187
[18] Furukawa T, Nakajima T and Takahashi Y 2006 IEEE Dielectr. Electr. Insul. 13 1120
[19] Pawlaczyk C Z, Tagantsev A K, Brooks K, Reaney I M, Klissurska R and Setter N 1995 Integr. Ferroelectr. 8 293
[20] Sussner H and Dransfeld K 1978 J. Polym. Sci. Polym. Phys. 16 529
[21] Eberle G, Schmidt H and Eisenmenger W 1996 IEEE Trans. Dielectr. Electr. Insul. 3 624
[22] Zhu G D, Zhang J H, Luo X Y and Yan X J 2009 Org. Electron. 10 753
[23] Zhu G D, Cong Y, Zhang J H, Luo X Y and Yan X J 2010 IEEE Electron Device Lett. 31 359
[24] Womes M, Bihler E and Eisenmenger W 1989 IEEE Trans. Electr. Insul. 24 461
[25] Zhu G D, Xu J, Yan X J, Li J, Zeng Z G, Shen M and Zhang L 2006 Comput. Mater. Sci. 37 512
[26] Lazareva I, Koval Y, Muller P, Muller K, Henkel K and Schmeisser D 2009 J. Appl. Phys. 105 054110
[27] Zhu G D, Luo X Y, Zhang J H and Yan X J 2009 J. Appl. Phys. 106 074113 endfootnotesize
[1] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[2] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[3] Experiments and SPICE simulations of double MgO-based perpendicular magnetic tunnel junction
Qiuyang Li(李求洋), Penghe Zhang(张蓬鹤), Haotian Li(李浩天), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Chunjie Yan(晏春杰), Liyuan Li(李丽媛), Yongbing Xu(徐永兵), Weixin Zhang(张卫欣), Bo Liu(刘波), Hao Meng(孟浩), Ronghua Liu(刘荣华), and Youwei Du(都有为). Chin. Phys. B, 2021, 30(4): 047504.
[4] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[5] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[6] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[7] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[8] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[9] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[10] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[11] Theoretical study on twisted intramolecular charge transfer of 1-aminoanthraquinone in different solvents
Si-Mei Sun(孙四梅), Song Zhang(张嵩), Chao Jiang(江超), Xiao-Shan Guo(郭小珊), Yi-Hui Hu(胡义慧). Chin. Phys. B, 2018, 27(8): 083401.
[12] Band offset and electronic properties at semipolar plane AlN(1101)/diamond heterointerface
Kong-Ping Wu(吴孔平), Wen-Fei Ma(马文飞), Chang-Xu Sun(孙昌旭), Chang-Zhao Chen(陈昌兆), Liu-Yi Ling(凌六一), Zhong-Gen Wang(王仲根). Chin. Phys. B, 2018, 27(5): 058101.
[13] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[14] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[15] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
No Suggested Reading articles found!