Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(9): 4037-4041    DOI: 10.1088/1674-1056/18/9/070
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of the influence of occupation rate of public transit vehicles on mixing traffic flow in a two-lane system

Qian Yong-Sheng(钱勇生)a)b)†, Shi Pei-Ji(石培基)b), Zeng Qiong(曾琼)a), Ma Chang-Xi(马昌喜)a), Lin Fang(林芳)a), Sun Peng(孙鹏)a), and Yin Xiao-Ting(尹小亭)a)
a School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China; b School of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
Abstract  Based on the existing classical cellular automaton model of traffic flow, a cellular automaton traffic model with different-maximum-speed vehicles mixed on a single lane is proposed, in which public transit and harbour-shaped bus stops are taken into consideration. Parameters such as length of cellular automaton, operation speed and random slow mechanism are re-demarcated. A harbour-shaped bus stop is set up and the vehicle changing lane regulation is changed. Through computer simulation, the influence of occupation rate of public transit vehicles on mixed traffic flow and traffic capacity is analysed. The results show that a public transport system can ease urban traffic congestion but creates new jams at the same time, and that the influence of occupation rate of public transit vehicles on traffic capacity is considerable. To develop urban traffic, attention should be paid to the occupation rate of public transit vehicles and traffic development in a haphazard way should be strictly avoided.
Keywords:  public transit vehicles      cellular automata      capacity      average velocity  
Received:  27 December 2008      Revised:  23 January 2009      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
Fund: Project supported by the Science and Technology Supporting Program of Gansu Province, China (Grant No 0804GKCA038).

Cite this article: 

Qian Yong-Sheng(钱勇生), Shi Pei-Ji(石培基), Zeng Qiong(曾琼), Ma Chang-Xi(马昌喜), Lin Fang(林芳), Sun Peng(孙鹏), and Yin Xiao-Ting(尹小亭) Analysis of the influence of occupation rate of public transit vehicles on mixing traffic flow in a two-lane system 2009 Chin. Phys. B 18 4037

[1] Pedestrian evacuation simulation in multi-exit case:An emotion and group dual-driven method
Yong-Xing Li(李永行), Xiao-Xia Yang(杨晓霞), Meng Meng(孟梦), Xin Gu(顾欣), Ling-Peng Kong(孔令鹏). Chin. Phys. B, 2023, 32(4): 048901.
[2] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[3] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[4] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[5] An extended cellular automata model with modified floor field for evacuation
Da-Hui Qin(秦大辉), Yun-Fei Duan(段云飞), Dong Cheng(程栋), Ming-Zhu Su(苏铭著), Yong-Bo Shao(邵永波). Chin. Phys. B, 2020, 29(9): 098901.
[6] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[7] Novel transit-time oscillator (TTO) combining advantages of radial-line and axial TTO
Wei-Li Xu(徐伟力), Jun-Tao He(贺军涛), Jun-Pu Ling(令钧溥), Li-Li Song(宋莉莉), Bing-Fang Deng(邓秉方), Ouzhixiong Dai(戴欧志雄), Xing-Jun Ge(葛行军). Chin. Phys. B, 2019, 28(8): 085201.
[8] Urban rail departure capacity analysis based on a cellular automaton model
Wen-Jun Li(李文俊), Lei Nie(聂磊). Chin. Phys. B, 2018, 27(7): 070204.
[9] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[10] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[11] Cellular automaton modeling of pedestrian movement behavior on an escalator
Fu-Rong Yue(岳芙蓉), Juan Chen(陈娟), Jian Ma(马剑), Wei-Guo Song(宋卫国), Siu-Ming Lo(卢兆明). Chin. Phys. B, 2018, 27(12): 124501.
[12] Charge compensation and capacity fading in LiCoO2 at high voltage investigated by soft x-ray absorption spectroscopy
Xing-Hui Long(龙兴辉), Yan-Ru Wu(吴颜如), Nian Zhang(张念), Peng-Fei Yu(于鹏飞), Xue-Fei Feng(冯雪飞), Shun Zheng(郑顺), Jia-Min Fu(傅佳敏), Xiao-Song Liu(刘啸嵩), Na Liu(柳娜), Meng Wang(王梦), Lei-Min Xu(徐磊敏), Jin-Ming Chen(陈锦明), Jenn-Min Lee(李振民). Chin. Phys. B, 2018, 27(10): 107802.
[13] Anomalous low-temperature heat capacity in antiperovskite compounds
Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平). Chin. Phys. B, 2017, 26(2): 026501.
[14] Orbital electronic heat capacity of hydrogenated monolayer and bilayer graphene
Mohsen Yarmohammadi. Chin. Phys. B, 2017, 26(2): 026502.
[15] Effects of rainy weather on traffic accidents of a freeway using cellular automata model
Ming-Bao Pang(庞明宝), Bo-Ning Ren(任泊宁). Chin. Phys. B, 2017, 26(10): 108901.
No Suggested Reading articles found!