Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(2): 630-635    DOI: 10.1088/1674-1056/18/2/040
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Effect of interstitial air holes on Bragg gratings in photonic crystal fibre with a Ge-doped core

Zhang Hui-Jia(张慧嘉), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田)
State Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  The effect of interstitial air holes on Bragg gratings in photonic crystal fibre (PCF) with a Ge-doped core is numerically investigated by using the beam propagation method (BPM). It is shown that the interstitial air holes (IAHs) can make Bragg resonance wavelength $\lambda _{\rm B}$ shift a little towards short wavelengths and increase $\lambda _{\rm B}-\lambda _{1}$ (the wavelength spacing between the main peak with Bragg resonance wavelength $\lambda _{\rm B}$ and the first side peak with wavelength $\lambda _{1})$ and the coupling coefficient $\kappa $ of Bragg resonance. Moreover, when the ratio of air hole diameter ($d$) to pitch (${\it\Lambda}$), $d/{\it\Lambda}$, is small, IAHs can suppress the cladding mode resonance. When $d/{\it\Lambda}$ is large, IAHs increase the number of mode that could strongly interact with the fundamental mode. By
comparing the transmission spectral characteristics of PCF-based fibre Bragg grating (FBG) with IAHs with those without IAHs at the same air-filling fraction, it is clarified that the change of transmission spectral characteristics of PCF-based FBG with IAHs is
not due to a simple change in air-filling fraction. It is also closely related to the distribution of interstitial air holes. 
Keywords:  photonic crystal fibre      fibre grating      beam propagation method      interstitial air holes  
Received:  23 August 2007      Revised:  11 July 2008      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.81.Bm (Fabrication, cladding, and splicing)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.79.Dj (Gratings)  
  61.72.J- (Point defects and defect clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10874145), and the Yanshan University Doctoral Foundation (Grant No B153).

Cite this article: 

Zhang Hui-Jia(张慧嘉), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田) Effect of interstitial air holes on Bragg gratings in photonic crystal fibre with a Ge-doped core 2009 Chin. Phys. B 18 630

[1] Passive polarization rotator based on silica photonic crystal fiber for 1.31-μm and 1.55-μm bands via adjusting the fiber length
Chen Lei (陈雷), Zhang Wei-Gang (张伟刚), Wang Li (王丽), Bai Zhi-Yong (白志勇), Zhang Shan-Shan (张珊珊), Wang Biao (王标), Yan Tie-Yi (严铁毅), Jonathan Sieg. Chin. Phys. B, 2014, 23(10): 104220.
[2] Temperature dependence of birefringence in olarization-maintaining photonic crystal fibres
Zhao Hong(赵红), Chen Meng(陈檬), and Li Gang(李港) . Chin. Phys. B, 2012, 21(6): 068404.
[3] Equilateral pentagon polarization maintaining photonic crystal fibre with low nonlinearity
Yang Han-Rui(杨汉瑞), Li Xu-You(李绪友), Hong Wei(洪伟), and Hao Jin-Hui(郝金会) . Chin. Phys. B, 2012, 21(2): 024211.
[4] High birefringence, low loss terahertz photonic crystal fibres with zero dispersion at 0.3 THz
Yin Guo-Bing(尹国冰), Li Shu-Guang(李曙光), Wang Xiao-Yan(王晓琰), and Liu Shuo(刘硕) . Chin. Phys. B, 2011, 20(9): 090701.
[5] Optical parametric chirped pulse amplification based on photonic crystal fibre
Wang He-Lin(王河林)a), Yang Ai-Jun(杨爱军), Leng Yu-Xin(冷雨欣), Wang Cheng(王乘), Xu Zhi-Zhan(徐至展), and Hou Lan-Tian(候蓝田). Chin. Phys. B, 2011, 20(8): 084208.
[6] Complete leaky mode coupling in dual-core photonic crystal fibre based on the coupled-mode theory
Yuan Jin-Hui(苑金辉), Yu Chong-Xiu(余重秀), Sang Xin-Zhu(桑新柱), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(6): 064101.
[7] Elliptical Gaussian solitons in synthetic nonlocal nonliear media
Cheng Shuang (程爽), Wang Qi (王奇), Ge Li-Juan (葛丽娟), Shi Jie-Long (施解龙), Ding Hai-Xia (丁海霞), Shen Ming (申明). Chin. Phys. B, 2011, 20(5): 054206.
[8] Broad and ultra-flattened supercontinuum generation in the visible wavelengths based on the fundamental mode of photonic crystal fibre with central holes
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Shen Xiang-Wei (申向伟), Zhang Jin-Long (张锦龙), Zhou Gui-Yao (周桂耀), Li Shu-Guang (李曙光), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2011, 20(5): 054210.
[9] Numerical investigation of slow solitons in Bragg gratings with a hyperbolic tangent apodization
Wang Kui-Ru(王葵如), Cheng Jie-Lin(程洁琳), Sang Xin-Zhu(桑新柱), and Chen Gong(陈功). Chin. Phys. B, 2011, 20(3): 034210.
[10] Improved high birefringence photonic crystal fibres with dispersion flattened and single mode operation
Fu Bo(付博), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Zhang Lei(张磊), and Zhang Mei-Yan(张美艳). Chin. Phys. B, 2011, 20(2): 024209.
[11] Theoretical investigation of band-gap and mode characteristics of anti-resonance guiding photonic crystal fibres
Yuan Jin-Hui(苑金辉), Sang Xin-Zhu(桑新柱), Yu Chong-Xiu(余重秀), Xin Xiang-Jun(忻向军), Zhang Jin-Long(张锦龙), Zhou Gui-Yao(周桂耀), Li Shu-Guang(李曙光), and Hou Lan-Tian(侯蓝田). Chin. Phys. B, 2011, 20(2): 024213.
[12] Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography
Yin Jun(尹君), Yu Ling-Yao(于凌尧), Liu Xing(刘星), Wan Hui(万辉), Lin Zi-Yang(林子扬), and Niu Han-Ben(牛憨笨). Chin. Phys. B, 2011, 20(1): 014206.
[13] A novel method of rapidly modeling optical properties of actual photonic crystal fibres
Wang Li-Wen(王立文), Lou Shu-Qin(娄淑琴), Chen Wei-Guo(陈卫国), and Li Hong-Lei(李宏雷). Chin. Phys. B, 2010, 19(8): 084209.
[14] Polarisation-sensitive four-wave mixing and soliton self-frequency shift effect in the highly birefringent photonic crystal fibre
Yuan Jin-Hui (苑金辉), Sang Xin-Zhu (桑新柱), Yu Chong-Xiu (余重秀), Xin Xiang-Jun (忻向军), Li Shu-Guang (李曙光), Zhou Gui-Yao (周桂耀), Hou Lan-Tian (侯蓝田). Chin. Phys. B, 2010, 19(7): 074218.
[15] High energy and long pulse generation with high-birefringence photonic crystal fibre and laser-diode pumped regenerative amplifier
Wang He-Lin(王河林), Wang Cheng(王承), Leng Yu-Xin(冷雨欣), Xu Zhi-Zhan(徐至展), and Hou Lan-Tian(候蓝田). Chin. Phys. B, 2010, 19(5): 054212.
No Suggested Reading articles found!