M-ary information processing via an optimal nonlinear detector
Li Jian-Long(李建龙)a)b)†
a Department of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, 310027, China; b Zhejiang Provincial Key Laboratory of Information Network Technology, Hangzhou, 310027, China
Abstract This paper presents a novel approach of M-ary baseband pulse amplitude modulated signal processing via a parameter-optimized nonlinear dynamic system. This nonlinear system usually shows the phenomenon of stochastic resonance by adding noise. To thoroughly discuss the signal processing performance of the nonlinear system, we tune the system parameters to obtain a nonlinear detector with optimal performance. For characterizing the output of the nonlinear system, the derivation of the probability of detection error is given by the system response speed and the probability density function of the nonlinear system output. By varying the noise intensity with fixed system parameters, the phenomenon of stochastic resonance is shown and by tuning the system parameters with fixed noise, the probability of detection error is minimized and the nonlinear system is optimized. The detection performance of the two cases is compared with the theoretical probability of detection error, which is validated by numerical simulation.
Received: 29 March 2009
Revised: 03 June 2009
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.