Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4901-4905    DOI: 10.1088/1674-1056/18/11/047
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Sub-natural linewidth of the probe absorption spectrum in a cold Cs atom--molecule system

Feng Zhi-Fang(冯志芳)a), Li Wei-Dong(李卫东)a), Xiao Lian-Tuan(肖连团)b), and Jia Suo-Tang(贾锁堂)b)
a Institute of Theoretical Physics, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; b State Key Laboratory of Quantum Optics and Quantum Optics Devices, College of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China
Abstract  We theoretically analysed the linewidth of the probe absorption spectrum in a cold Cs atom--molecule system. The tunnelling coupling between the two excited molecular states, especially for the Cs atom--molecule system, plays an important role in obtaining the sub-natural linewidth of the probe absorption spectrum. For example, when the tunnelling couple strength fulfils $\sigma_{12}=10\gamma_{ab_1}$, the linewidth is only about 0.66 MHz. Moreover, since the linewidth of interest is dominated by the tunnelling coupling, the absorption peak becomes very narrow even in the case of large pump laser intensities.
Keywords:  sub-natural linewidth      tunnelling coupling  
Received:  19 January 2009      Revised:  27 February 2009      Accepted manuscript online: 
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  33.70.Jg (Line and band widths, shapes, and shifts)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10444002, 10674087 and 10574084), 973 program (Grant Nos 2006CB921603 and 2008CB317103), SRF for ROCS, SEM, SRF for ROCS, Ministry of Personal of China and SRF for ROCS of Shanxi Province of China.

Cite this article: 

Feng Zhi-Fang(冯志芳), Li Wei-Dong(李卫东), Xiao Lian-Tuan(肖连团), and Jia Suo-Tang(贾锁堂) Sub-natural linewidth of the probe absorption spectrum in a cold Cs atom--molecule system 2009 Chin. Phys. B 18 4901

[1] Precise measurement of 171Yb magnetic constants for 1S03P0 clock transition
Ang Zhang(张昂), Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2023, 32(2): 020601.
[2] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[3] Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation
Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰). Chin. Phys. B, 2021, 30(8): 083203.
[4] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[5] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[6] A transportable optical lattice clock at the National Time Service Center
De-Huan Kong(孔德欢), Zhi-Hui Wang(王志辉), Feng Guo(郭峰), Qiang Zhang(张强), Xiao-Tong Lu(卢晓同), Ye-Bing Wang(王叶兵), Hong Chang(常宏). Chin. Phys. B, 2020, 29(7): 070602.
[7] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[8] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[9] A sensitive detection of high Rydberg atom with large dipole moment
Shan-Shan Zhang(张珊珊), Hong Cheng(成红), Pei-Pei Xin(辛培培), Han-Mu Wang(王汉睦), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(7): 074207.
[10] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[11] Precise calibration of zero-crossing temperature and drift of an ultralow expansion cavity with a clock transition spectrum
Hui Liu(刘慧), Kun-Liang Jiang(姜坤良), Jin-Qi Wang(王进起), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), Bao-Long Lü(吕宝龙). Chin. Phys. B, 2018, 27(5): 053201.
[12] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[13] A new fully quantum-mechanical method used to calculate the collisional broadening coefficients and shift coefficients of Rb D1 lines perturbed by noble gases He and Ar
Wei Zhang(张伟), Yanchao Shi(史彦超), Bitao Hu(胡碧涛), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(1): 013201.
[14] Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core
Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua. Chin. Phys. B, 2017, 26(7): 073202.
[15] Analytical solutions for a doubly driven two-level atom
Jin-Yun Liu(刘晋允), Feng-Dong Jia(贾凤东), Xiao-Kang Li(李晓康), Shuang-Fei Lv(吕双飞), Xiang-Yuan Xu(许祥源), Ping Xue(薛平), Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2017, 26(7): 074203.
No Suggested Reading articles found!