Abstract Electronic properties of the (001) surface of cubic BaZrO$_{3}$ with BaO and ZrO$_{2}$ terminations have been studied using first-principles calculations. Surface structure, partial density of states, band structure and surface energy have been obtained. We find that the largest relaxation appears in the first layer of atoms, and the relaxation of the BaO-terminated surface is larger than that of the ZrO$_{2}$-terminated surface. The surface rumpling of the BaO-terminated surface is also larger than that of the ZrO$_{2}$-terminated surface. Results of surface energy calculations reveal that the BaZrO$_{3}$ surface is likely to be more stable than the PbZrO$_{3}$ surface.
Accepted manuscript online:
PACS:
73.20.At
(Surface states, band structure, electron density of states)
Fund: Project supported by the National
Basic Research Program of China (Grant No 2007CB607504) and the
National Natural Science Foundation of China (Grant No 10474057).
Cite this article:
Zhang Chao(张超), Wang Chun-Lei(王春雷), Li Ji-Chao(李吉超), Yang Kun(杨鲲), Zhang Yan-Fei(张艳飞), and Wu Qing-Zao(吴清早) Surface rumples and band gap reductions of cubic BaZrO3 (001) surface studied by means of first-principles calculations 2008 Chin. Phys. B 17 274
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.