Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(1): 27-33    DOI: 10.1088/1674-1056/17/1/005
GENERAL Prev   Next  

Remote preparation of an entangled two-qubit state with three parties

Dai Hong-Yi (戴宏毅)a)†, Chen Ping-Xing (陈平形)a), Zhang Ming(张明)b), and Li Cheng-Zu(李承祖)a)
a College of Science, National University of Defense Technology, Changsha 410073, China; b College of Mechatronics Engineering and Automatization, National University of Defense Technology, Changsha 410073, China
Abstract  We present a scheme for probabilistic remote preparation of an entangled two-qubit state with three parties from a sender to either of two receivers. The quantum channel is composed of a partially entangled two-qubit state and a partially entangled three-qubit state. We calculate the successful total probabilities of the scheme in general and particular cases, respectively. We also calculate total classical communication cost in a general case and two particular cases, respectively.
Keywords:  remote state preparation      two-qubit      classical communication cost      three parties  
Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10404039 and 60674040).

Cite this article: 

Dai Hong-Yi (戴宏毅), Chen Ping-Xing (陈平形), Zhang Ming(张明), and Li Cheng-Zu(李承祖) Remote preparation of an entangled two-qubit state with three parties 2008 Chin. Phys. B 17 27

[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[3] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[4] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[5] Quantum speed-up capacity in different types of quantum channels for two-qubit open systems
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超). Chin. Phys. B, 2018, 27(6): 060302.
[6] Two-qubit pure state tomography by five product orthonormal bases
Yu Wang(王宇), Yun Shang(尚云). Chin. Phys. B, 2018, 27(10): 100306.
[7] Geometric global quantum discord of two-qubit states
Yunlong Xiao(肖运龙), Tao Li(李陶), Shao-Ming Fei(费少明), Naihuan Jing(景乃桓), Zhi-Xi Wang(王志玺), Xianqing Li-Jost(李先清). Chin. Phys. B, 2016, 25(3): 030301.
[8] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[9] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[10] Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels
Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先). Chin. Phys. B, 2014, 23(9): 090307.
[11] Efficient remote preparation of arbitrary two-and three-qubit states via the χ state
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星). Chin. Phys. B, 2014, 23(9): 090308.
[12] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[13] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[14] Maximal and total skew information for a two-qubit system using nonlinear interaction models
Sun Hong-Gui(孙红贵), Liu Wan-Fang(刘万芳), and Li Chun-Jie(李春杰) . Chin. Phys. B, 2011, 20(9): 090301.
[15] Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost
Dai Hong-Yi(戴宏毅), Zhang Ming(张明), Chen Ju-Mei(陈菊梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2011, 20(5): 050310.
No Suggested Reading articles found!