Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090308    DOI: 10.1088/1674-1056/23/9/090308
GENERAL Prev   Next  

Efficient remote preparation of arbitrary two-and three-qubit states via the χ state

Ma Song-Ya (马松雅)a, Luo Ming-Xing (罗明星)b c
a School of Mathematics and Information Sciences, Henan University, Kaifeng 475004, China;
b School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
c State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing 100093, China
Abstract  The application of χ state are investigated in remote state preparation (RSP). By constructing useful measurement bases with the aid of Hurwitz matrix equation, we propose several RSP schemes of arbitrary two-and three-qubit states via the χ state as the entangled resource. It is shown that the original state can be successfully prepared with the probability 100% and 50% for real coefficients and complex coefficients, respectively. For the latter case, the special ensembles with unit success probability are discussed by the permutation group. It is worth mentioning that the novel measurement bases have no restrictions on the coefficients of the prepared state, which means that the proposed schemes are more applicable.
Keywords:  χ state      remote state preparation      Hurwitz matrix equation      measurement basis      permutation group  
Received:  26 January 2014      Revised:  05 March 2014      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201253 and 61303039) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2682014CX095).
Corresponding Authors:  Ma Song-Ya     E-mail:  masongya0829@126.com

Cite this article: 

Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星) Efficient remote preparation of arbitrary two-and three-qubit states via the χ state 2014 Chin. Phys. B 23 090308

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Lo H K 2000 Phys. Rev. A 62 012313
[3] Pati A K 2001 Phys. Rev. A 63 014302
[4] Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[5] Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
[6] Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905
[7] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[8] Liu J M and Wang Y Z 2004 Chin. Phys. 13 147
[9] Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315
[10] Ma Y C, Zhang Y S and Guo G C 2007 Chin. Phys. Lett. 24 606
[11] Dai H Y, Chen P X, Zhang M and Li C Z 2008 Chin. Phys. B 17 27
[12] Ma P C and Zhan Y B 2008 Chin. Phys. B 17 445
[13] Deng L, Chen A X and Xu Y Q 2008 Chin. Phys. B 17 3725
[14] An N B 2009 J. Phys. B 42 125501
[15] Zhan Y B and Ma P C 2010 Chin. Phys. B 19 080310
[16] Luo M X, Chen X B, Ma S Y, Niu X X and Yang Y X 2010 Opt. Commun. 283 4796
[17] Liang H Q, Jin M L, Shang S F and Chen J G 2011 J. Phys. B 44 115506
[18] Luo M X, Chen X B, Ma S Y, Yang Y X and Hu Z M 2010 J. Phys. B 43 065501
[19] Zha X W and Song H Y 2011 Opt. Commun. 284 1472
[20] Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X 2011 Opt. Commun. 284 4088
[21] Liu J M, Feng X L and Oh C H 2009 Europhys. Lett. 87 30006
[22] Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B 44 075501
[23] An N B, Bich C T and Don N V 2011 Phys. Lett. A 375 3570
[24] Chen Q Q, Xia Y and Song J 2012 J. Phys. A 45 055303
[25] Xia Y, Chen Q Q and An N B 2012 J. Phys. A 45 335306
[26] Wang Y and Ji X 2013 Chin. Phys. B 22 020306
[27] Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quant. Inform. Process. 11 1653
[28] Ma S Y, Tang P and Luo M X 2013 Int. J. Quant. Inform. 11 1350042
[29] Luo M X, Yun D, Chen X B and Yang Y X 2013 Quant. Inf. Process. 12 279
[30] Chen Z F, Liu J M and Ma L 2014 Chin. Phys. B 23 020312
[31] Peters N A, Barreiro J T, Goggin M E, Wei T C and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
[32] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
[33] Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407
[34] Killoran N, Biggerstaff D N, Kaltenbaek R, Resch K J and Lütkenhaus N 2010 Phys. Rev. A 81 012334
[35] Rådmark M, Wieśniak M, Żukowski M and Bourennane M 2013 Phys. Rev. A 88 032304
[36] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[37] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[38] Wang X W, Xia L X, Wang Z Y and Zhang D Y 2010 Opt. Commun. 283 1196
[39] Luo M X and Deng Y 2013 Quant. Inform. Process. 12 773
[40] Qu Z G, Chen X B, Luo M X, Niu X X and Yang Y X 2011 Opt. Commun. 284 2075
[41] Xu Y C 2000 Theory of Complex Homogeneous Bounded Domains (Beijing: Science Press/Kluwer Academic Publishers) pp. 239-253
[42] Cameron P J 1999 Permutation Groups (LMS Student Text 45) (Cambridge: Cambridge University Press) pp. 7-28
[1] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[2] Quantum multicast schemes of different quantum states via non-maximally entangled channels with multiparty involvement
Yan Yu(于妍), Nan Zhao(赵楠), Chang-Xing Pei(裴昌幸), and Wei Li(李玮). Chin. Phys. B, 2021, 30(9): 090302.
[3] Efficient scheme for remote preparation of arbitrary n-qubit equatorial states
Xin-Wei Zha(查新未), Min-Rui Wang(王敏锐), Ruo-Xu Jiang(姜若虚). Chin. Phys. B, 2020, 29(4): 040304.
[4] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[5] Controlled remote preparation of an arbitrary four-qubit cluster-type state
Wei-Lin Chen(陈维林), Song-Ya Ma(马松雅), Zhi-Guo Qu(瞿治国). Chin. Phys. B, 2016, 25(10): 100304.
[6] Efficient schemes of joint remote preparation with a passive receiver via EPR pairs
Ma Song-Ya (马松雅), Gao Cong (高聪), Luo Ming-Xing (罗明星). Chin. Phys. B, 2015, 24(11): 110308.
[7] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[8] Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels
Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先). Chin. Phys. B, 2014, 23(9): 090307.
[9] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[10] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
[11] Probabilistic remote preparation of a high-dimensional equatorial multiqubit with four-party and classical communication cost
Dai Hong-Yi(戴宏毅), Zhang Ming(张明), Chen Ju-Mei(陈菊梅), and Li Cheng-Zu(李承祖). Chin. Phys. B, 2011, 20(5): 050310.
[12] Scheme for implementing perfect remote state preparation with W-class state in cavity QED
Wang Xue-Wen(王学文) and Peng Zhao-Hui(彭朝晖). Chin. Phys. B, 2008, 17(7): 2346-2351.
[13] Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state
Ma Peng-Cheng(马鹏程) and Zhan You-Bang(詹佑邦). Chin. Phys. B, 2008, 17(2): 445-450.
[14] High efficient scheme for remote state preparation with cavity QED
Deng Li(邓黎), Chen Ai-Xi(陈爱喜), and Xu Yan-Qiu(徐彦秋). Chin. Phys. B, 2008, 17(10): 3725-3728.
[15] Remote preparation of an entangled two-qubit state with three parties
Dai Hong-Yi (戴宏毅), Chen Ping-Xing (陈平形), Zhang Ming(张明), and Li Cheng-Zu(李承祖) . Chin. Phys. B, 2008, 17(1): 27-33.
No Suggested Reading articles found!