|
|
Efficient remote preparation of arbitrary two-and three-qubit states via the χ state |
Ma Song-Ya (马松雅)a, Luo Ming-Xing (罗明星)b c |
a School of Mathematics and Information Sciences, Henan University, Kaifeng 475004, China; b School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China; c State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing 100093, China |
|
|
Abstract The application of χ state are investigated in remote state preparation (RSP). By constructing useful measurement bases with the aid of Hurwitz matrix equation, we propose several RSP schemes of arbitrary two-and three-qubit states via the χ state as the entangled resource. It is shown that the original state can be successfully prepared with the probability 100% and 50% for real coefficients and complex coefficients, respectively. For the latter case, the special ensembles with unit success probability are discussed by the permutation group. It is worth mentioning that the novel measurement bases have no restrictions on the coefficients of the prepared state, which means that the proposed schemes are more applicable.
|
Received: 26 January 2014
Revised: 05 March 2014
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201253 and 61303039) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2682014CX095). |
Corresponding Authors:
Ma Song-Ya
E-mail: masongya0829@126.com
|
Cite this article:
Ma Song-Ya (马松雅), Luo Ming-Xing (罗明星) Efficient remote preparation of arbitrary two-and three-qubit states via the χ state 2014 Chin. Phys. B 23 090308
|
[1] |
Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Lo H K 2000 Phys. Rev. A 62 012313
|
[3] |
Pati A K 2001 Phys. Rev. A 63 014302
|
[4] |
Bennett C H, DiVincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
|
[5] |
Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
|
[6] |
Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905
|
[7] |
Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
|
[8] |
Liu J M and Wang Y Z 2004 Chin. Phys. 13 147
|
[9] |
Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315
|
[10] |
Ma Y C, Zhang Y S and Guo G C 2007 Chin. Phys. Lett. 24 606
|
[11] |
Dai H Y, Chen P X, Zhang M and Li C Z 2008 Chin. Phys. B 17 27
|
[12] |
Ma P C and Zhan Y B 2008 Chin. Phys. B 17 445
|
[13] |
Deng L, Chen A X and Xu Y Q 2008 Chin. Phys. B 17 3725
|
[14] |
An N B 2009 J. Phys. B 42 125501
|
[15] |
Zhan Y B and Ma P C 2010 Chin. Phys. B 19 080310
|
[16] |
Luo M X, Chen X B, Ma S Y, Niu X X and Yang Y X 2010 Opt. Commun. 283 4796
|
[17] |
Liang H Q, Jin M L, Shang S F and Chen J G 2011 J. Phys. B 44 115506
|
[18] |
Luo M X, Chen X B, Ma S Y, Yang Y X and Hu Z M 2010 J. Phys. B 43 065501
|
[19] |
Zha X W and Song H Y 2011 Opt. Commun. 284 1472
|
[20] |
Ma S Y, Chen X B, Luo M X, Zhang R and Yang Y X 2011 Opt. Commun. 284 4088
|
[21] |
Liu J M, Feng X L and Oh C H 2009 Europhys. Lett. 87 30006
|
[22] |
Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B 44 075501
|
[23] |
An N B, Bich C T and Don N V 2011 Phys. Lett. A 375 3570
|
[24] |
Chen Q Q, Xia Y and Song J 2012 J. Phys. A 45 055303
|
[25] |
Xia Y, Chen Q Q and An N B 2012 J. Phys. A 45 335306
|
[26] |
Wang Y and Ji X 2013 Chin. Phys. B 22 020306
|
[27] |
Chen X B, Ma S Y, Su Y, Zhang R and Yang Y X 2012 Quant. Inform. Process. 11 1653
|
[28] |
Ma S Y, Tang P and Luo M X 2013 Int. J. Quant. Inform. 11 1350042
|
[29] |
Luo M X, Yun D, Chen X B and Yang Y X 2013 Quant. Inf. Process. 12 279
|
[30] |
Chen Z F, Liu J M and Ma L 2014 Chin. Phys. B 23 020312
|
[31] |
Peters N A, Barreiro J T, Goggin M E, Wei T C and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
|
[32] |
Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
|
[33] |
Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407
|
[34] |
Killoran N, Biggerstaff D N, Kaltenbaek R, Resch K J and Lütkenhaus N 2010 Phys. Rev. A 81 012334
|
[35] |
Rådmark M, Wieśniak M, Żukowski M and Bourennane M 2013 Phys. Rev. A 88 032304
|
[36] |
Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
|
[37] |
Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
|
[38] |
Wang X W, Xia L X, Wang Z Y and Zhang D Y 2010 Opt. Commun. 283 1196
|
[39] |
Luo M X and Deng Y 2013 Quant. Inform. Process. 12 773
|
[40] |
Qu Z G, Chen X B, Luo M X, Niu X X and Yang Y X 2011 Opt. Commun. 284 2075
|
[41] |
Xu Y C 2000 Theory of Complex Homogeneous Bounded Domains (Beijing: Science Press/Kluwer Academic Publishers) pp. 239-253
|
[42] |
Cameron P J 1999 Permutation Groups (LMS Student Text 45) (Cambridge: Cambridge University Press) pp. 7-28
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|