Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090307    DOI: 10.1088/1674-1056/23/9/090307
GENERAL Prev   Next  

Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels

Chang Li-Wei (常利伟)a b, Zheng Shi-Hui (郑世慧)a b, Gu Li-Ze (谷利泽)a b, Xiao Da (肖达)a b, Yang Yi-Xian (杨义先)a b
a Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We firstly present a novel scheme for deterministic joint remote state preparation of an arbitrary five-qubit Brown state using four Greenberg-Horme-Zeilinger (GHZ) entangled states as the quantum channel. The success probability of this scheme is up to 1, which is superior to the existing ones. Moreover, the scheme is extended to the generalized case where three-qubit and four-qubit non-maximally entangled states are taken as the quantum channel. We simultaneously employ two common methods to reconstruct the desired state. By comparing these two methods, we draw a conclusion that the first is superior to the second-optimal positive operator-valued measure only taking into account the number of auxiliary particles and the success probability.
Keywords:  joint remote state preparation      Brown state      optimal positive operator-valued measure  
Received:  21 November 2013      Revised:  10 March 2014      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61370194 and 61202082), the Fundamental Research Funds for the Central Universities of China (Grant Nos. BUPT2012RC0219), and the Foundation of Science and Technology of Huawei of China.
Corresponding Authors:  Chang Li-Wei     E-mail:  changliwei002@163.com

Cite this article: 

Chang Li-Wei (常利伟), Zheng Shi-Hui (郑世慧), Gu Li-Ze (谷利泽), Xiao Da (肖达), Yang Yi-Xian (杨义先) Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels 2014 Chin. Phys. B 23 090307

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Qi K G and Yuan H C 2005 Chin. Phys. 14 1716
[3] Fang M F, Wang X W and Liu X 2006 Chin. Phys. 15 676
[4] Tan X H, Fang X M and Wang G Y 2007 Chin. Phys. Lett. 24 340
[5] Zhou Y L, Yang L J and Dai H Y 2007 Chin. Phys. 16 3692
[6] Zhang C M and Zha X W 2008 Acta Phys. Sin. 57 1339 (in Chinese)
[7] Lo H K 2000 Phys. Rev. A 62 012313
[8] Pati A K 2001 Phys. Rev. A 63 014302
[9] Bennett C H, DiVincenzo D P, Shor P W and Smolin J A 2001 Phys. Rev. Lett. 87 077902
[10] Devetak I and Berger T 2001 Phys. Rev. Lett. 87 177901
[11] Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
[12] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 027901
[13] Hayashi A, Hashimoto T and Horibe M 2003 Phys. Rev. A 67 052302
[14] Liu J M and Wang Y Z 2004 Chin. Phys. 13 0147
[15] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[16] Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315
[17] Kurucz Z, Adam P and Janszky J 2006 Phys. Rev. A 73 062301
[18] Deng L, Chen A X and Xu Y Q 2008 Chin. Phys. B 17 3725
[19] Wang Y and Ji X 2013 Chin. Phys. B 22 020306
[20] Luo M X, Deng Y, Chen X B and Yang Y X 2013 Quantum Inf. Process. 12 279
[21] An N B and Kim J 2008 J. Phys. B 41 095501
[22] An N B 2010 Opt. Commun. 283 4113
[23] Peng J Y, Luo M X and Mo Z W 2013 Quantum Inf. Process. 12 2325
[24] Zhan Y B and Ma P C 2013 Quantum Inf. Process. 12 0997
[25] Xiao X Q, Liu J M and Zeng G H 2011 J. Phys. B 44 075501
[26] Zhan Y B, Hu B L and Ma P C 2011 J. Phys. B 44 095501
[27] Luo M X and Deng Y 2012 Int. J. Theor. Phys. 51 3027
[28] Brown I D K, Stepney S, Sudbery A and Braunstein S L 2005 J. Phys. A 38 1119
[29] Muralidharan S 2008 Phys. Rev. A 77 032321
[30] Luo M X, Peng J Y and Mo Z W 2013 Int. J. Theor. Phys. 52 644
[31] Helstrom C W 1976 Quantum Dectection and Estimation Theory (New York: Academic Press)
[32] Mar T and Horodecki P 1999 arXiv:quant-ph/9906039
[33] Aharonov Y and Vaidman L 1990 Phys. Rev. A 41 11
[34] Johansen L M 2007 Phys. Rev. A 76 012119
[35] Reck M, Zeilinger A, Bernstein H J and Bertani P 1994 Phys. Rev. Lett. 73 58
[36] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[37] Pittman T B, Fitch M J, Jacobs B C and Franson J D 2003 Phys. Rev. A 68 032316
[38] O'Brien J L, Pryde G J, White A G, Ralph T C and Branning D 2003 Nature 426 264
[39] Ahnert S E and Payne M C 2005 Phys. Rev. A 71 012330
[40] Ziman M and Buzek V 2005 Phys. Rev. A 72 022343
[1] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[2] Deterministic joint remote state preparation of arbitrary single- and two-qubit states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Xu Fu-Fang (徐馥芳), Yang Hong (杨宏), Pei Chang-Xing (裴昌幸). Chin. Phys. B, 2015, 24(10): 100307.
[3] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
[4] Deterministic joint remote state preparation of arbitrary two- and three-qubit states
Wang Yuan (王媛), Ji Xin (计新). Chin. Phys. B, 2013, 22(2): 020306.
No Suggested Reading articles found!