Please wait a minute...
Chinese Physics, 2007, Vol. 16(2): 553-557    DOI: 10.1088/1009-1963/16/2/045
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Formation mechanism of incubation layers in the initial stage of microcrystalline silicon growth by PECVD

Hou Guo-Fu(侯国付)a)b)c), Xue Jun-Ming(薛俊明)a)b)c), Guo Qun-Chao(郭群超)a)b)c), Sun Jian(孙建)a)b)c), Zhao Ying(赵颖)a)b)c), Geng Xin-Hua(耿新华)a)b)c), and Li Yi-Gang(李乙钢)d)
a Institute of Photoelectronics, Nankai University, Tianjin 300071, Chinab Tianjin Key Laboratory of Photoelectronic Thin Film Devices and Technique, Tianjin 300071, Chinac Key Laboratory of Optoelectronic Information Science and Technology, Chinese Ministry of Education, Tianjin 300071, China; b Institute of Physics, Nankai University, Tianjin 300071, China
Abstract  The incubation layers in microcrystalline silicon films ($\mu$c-Si:H) are studied in detail. The incubation layers in $\mu$c-Si:H films are investigated by bifacial Raman spectra, and the results indicate that either decreasing silane concentration (SC) or increasing plasma power can reduce the thickness of incubation layer. The analysis of the in-situ diagnosis by plasma optical emission spectrum (OES) shows that the emission intensities of the SiH*(412 nm) and H$_{\alpha}$ (656nm) lines are time-dependent, thus SiH*/H$_{\alpha}$ ratio is of temporal evolution. The variation of SiH*/H$_{\alpha}$ ratio can indicate the variation in relative concentration of precursor and atomic hydrogen in the plasma. And the atomic hydrogen plays a crucial role in the formation of $\mu$c-Si:H; thus, with the plasma excited, the temporal-evolution SiH*/H$_{\alpha}$ ratio has a great influence on the formation of an incubation layer in the initial growth stage. The fact that decreasing the SC or increasing the plasma power can decrease the SiH*/H$_{\alpha}$ ratio is used to explain why the thickness of incubation layer can reduce with decreasing the SC or increasing the plasma power.
Keywords:  microcrystalline silicon      incubation layer      bifacial Raman measurement      optical emission spectrum (OES)  
Received:  23 December 2005      Revised:  09 August 2006      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  68.55.A- (Nucleation and growth)  
  68.55.-a (Thin film structure and morphology)  
  78.30.Am (Elemental semiconductors and insulators)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant Nos 2006CB202602 and 2006CB202603), the Starting Project of Nankai University (Grant No J02033) and the Key Laboratory of Optoelectronic Information Technical Science, Ministry of Education (Grant No 2005-18), and the Key Project of Tianjin Municipal Science and Technology Commission (Grant No 043186511).

Cite this article: 

Hou Guo-Fu(侯国付), Xue Jun-Ming(薛俊明), Guo Qun-Chao(郭群超), Sun Jian(孙建), Zhao Ying(赵颖), Geng Xin-Hua(耿新华), and Li Yi-Gang(李乙钢) Formation mechanism of incubation layers in the initial stage of microcrystalline silicon growth by PECVD 2007 Chinese Physics 16 553

[1] Growth characteristics of amorphous-layer-free nanocrystalline silicon films fabricated by very high frequency PECVD at 250 ℃
Guo Yan-Qing(郭艳青), Huang Rui(黄锐), Song Jie(宋捷), Wang Xiang(王祥), Song Chao(宋超), and Zhang Yi-Xiong(张奕雄) . Chin. Phys. B, 2012, 21(6): 066106.
[2] Influence of ignition condition on the growth of silicon thin films using plasma enhanced chemical vapour deposition
Zhang Hai-Long(张海龙), Liu Feng-Zhen(刘丰珍), Zhu Mei-Fang(朱美芳), and Liu Jin-Long(刘金龙) . Chin. Phys. B, 2012, 21(1): 015203.
[3] Influence of Boron doping on microcrystalline silicon growth
Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) . Chin. Phys. B, 2011, 20(9): 096801.
[4] Micromorph tandem solar cells: optimization of the microcrystalline silicon bottom cell in a single chamber system
Zhang Xiao-Dan(张晓丹), Zheng Xin-Xia(郑新霞), Xu Sheng-Zhi(许盛之), Lin Quan(林泉), Wei Chang-Chun(魏长春), Sun Jian(孙建), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖) . Chin. Phys. B, 2011, 20(10): 108801.
[5] Reduction of the phosphorus contamination for plasma deposition of p–i–n microcrystalline silicon solar cells in a single chamber
Wang Guang-Hong(王光红), Zhang Xiao-Dan(张晓丹), Xu Sheng-Zhi(许盛之), Zheng Xin-Xia(郑新霞), Wei Chang-Chun(魏长春), Sun Jian(孙建), Xiong Shao-Zhen(熊绍珍), Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2010, 19(9): 098102.
[6] The study of amorphous incubation layers during the growth of microcrystalline silicon films under different deposition conditions
Chen Yong-Sheng(陈永生), Xu Yan-Hua(徐艳华), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Yang Shi-E(杨仕娥), and Gao Xiao-Yong(郜小勇). Chin. Phys. B, 2010, 19(8): 087206.
[7] The effect of initial discharge conditions on the properties of microcrystalline silicon thin films and solar cells
Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Wang Jian-Hua(汪建华), Lu Jing-Xiao(卢景霄),Gao Xiao-Yong(郜小勇), and Gu Jin-Hua(谷锦华). Chin. Phys. B, 2010, 19(5): 057205.
[8] Analysis of heating effect on the process of high deposition rate microcrystalline silicon
Zhang Xiao-Dan(张晓丹),Zhang He(张鹤),Wei Chang-Chun(魏长春), Sun Jian(孙建), Hou Guo-Fu(侯国付), Xiong Shao-Zhen(熊绍珍),Geng Xin-Hua(耿新华), and Zhao Ying(赵颖). Chin. Phys. B, 2010, 19(3): 038101.
[9] Influence of the total gas flow rate on high rate growth microcrystalline silicon films and solar cells
Han Xiao-Yan(韩晓艳), Hou Guo-Fu(侯国付), Zhang Xiao-Dan(张晓丹), Wei Chang-Chun(魏长春), Li Gui-Jun(李贵君), Zhang De-Kun(张德坤), Chen Xin-Liang(陈新亮), Sun Jian(孙健), Zhang Jian-Jun(张建军), Zhao Ying(赵颖), and Geng Xin-Hua(耿新华). Chin. Phys. B, 2009, 18(8): 3563-3567.
[10] Research on the boron contamination at the p/i interface of microcrystalline silicon solar cells deposited in a single PECVD chamber
Zhang Xiao-Dan(张晓丹), Sun Fu-He(孙福和), Wei Chang-Chun(魏长春), Sun Jian(孙建), Zhang De-Kun(张德坤), Geng Xin-Hua(耿新华), Xiong Shao-Zhen(熊绍珍), and Zhao Ying(赵颖). Chin. Phys. B, 2009, 18(10): 4558-4563.
[11] Electronic structure and defect states of transition films from amorphous to microcrystalline silicon studied by surface photovoltage spectroscopy
Yu Wei(于威), Wang Chun-Sheng(王春生), Lu Wan-Bing(路万兵), He Jie(何杰), Han Xiao-Xia(韩晓霞), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2007, 16(8): 2310-2314.
[12] Effect of substrate temperature and pressure on properties of microcrystalline silicon films
Wu Zhi-Meng (吴志猛), Lei Qing-Song (雷青松), Geng Xin-Hua (耿新华), Zhao Ying (赵颖), Sun Jian (孙建), Xi Jian-Ping (奚建平). Chin. Phys. B, 2006, 15(6): 1320-1324.
[13] The role of hydrogen in hydrogenated microcrystalline silicon film and in deposition process with VHF-PECVD technique
Yang Hui-Dong (杨恢东), Su Zhong-Yi (苏中义). Chin. Phys. B, 2006, 15(6): 1374-1378.
[14] Influence of total gas flow rate on microcrystalline silicon films prepared by VHF-PECVD
Gao Yan-Tao (高艳涛), Zhang Xiao-Dan (张晓丹), Zhao Ying (赵颖), Sun Jian (孙健), Zhu Feng (朱峰), Wei Chang-Chun (魏长春), Chen Fei (陈飞). Chin. Phys. B, 2006, 15(5): 1110-1113.
[15] Optical emission spectroscopy study on depositionprocess of microcrystalline silicon
Wu Zhi-Meng(吴志猛), Lei Qing-Song(雷青松), Geng Xin-Hua(耿新华), Zhao Ying(赵颖), Sun Jian(孙建), and Xi Jian-Ping(奚建平). Chin. Phys. B, 2006, 15(11): 2713-2717.
No Suggested Reading articles found!