Please wait a minute...
Chinese Physics, 2006, Vol. 15(1): 177-181    DOI: 10.1088/1009-1963/15/1/028
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum Boltzmann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation

Du Gang (杜刚), Liu Xiao-Yan (刘晓彦), Han Ru-Qi (韩汝琦)
Department of Microelectronic, Peking University,Beijing 100871, China
Abstract  A two-dimensional (2D) full band self-consistent ensemble Monte Carlo (MC) method for solving the quantum Boltzmann equation, including collision broadening and quantum potential corrections, is developed to extend the MC method to the study of nano-scale semiconductor devices with obvious quantum mechanical (QM) effects. The quantum effects both in real space and momentum space in nano-scale semiconductor devices can be simulated. The effective mobility in the inversion layer of n and p channel MOSFET is simulated and compared with experimental data to verify this method. With this method 50nm ultra thin body silicon on insulator MOSFET are simulated. Results indicate that this method can be used to simulate the 2D QM effects in semiconductor devices including tunnelling effect.
Keywords:  quantum mechanical effect      Monte Carlo method      semiconductor device      carrier transport  
Received:  04 July 2005      Revised:  28 September 2005      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  02.70.Ss (Quantum Monte Carlo methods)  
Fund: Project supported by the SpecialFoundation for State Major Basic Research Program of China (Grant NoG2000035602) and the\linebreak\makebox[1.6mm]{}National Natural Science Foundation of China (GrantNo 90307006).

Cite this article: 

Du Gang (杜刚), Liu Xiao-Yan (刘晓彦), Han Ru-Qi (韩汝琦) Quantum Boltzmann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation 2006 Chinese Physics 15 177

[1] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[2] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[3] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[4] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[5] Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors
Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(8): 084212.
[6] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[7] Effect of transient space-charge perturbation on carrier transport in high-resistance CdZnTe semiconductor
Yu Guo(郭玉), Gang-Qiang Zha(查钢强), Ying-Rui Li(李颖锐), Ting-Ting Tan(谭婷婷), Hao Zhu(朱昊), Sen Wu(吴森). Chin. Phys. B, 2019, 28(11): 117201.
[8] Multi-carrier transport in ZrTe5 film
Fangdong Tang(汤方栋), Peipei Wang(王培培), Peng Wang(王鹏), Yuan Gan(甘远), Le Wang(王乐), Wei Zhang(张威), Liyuan Zhang(张立源). Chin. Phys. B, 2018, 27(8): 087307.
[9] Black phosphorus-based field effect transistor devices for Ag ions detection
Hui-De Wang(王慧德), David K Sang, Zhi-Nan Guo(郭志男), Rui Cao(曹睿), Jin-Lai Zhao(赵劲来), Muhammad Najeeb Ullah Shah, Tao-Jian Fan(范涛健), Dian-Yuan Fan(范滇元), Han Zhang(张晗). Chin. Phys. B, 2018, 27(8): 087308.
[10] Frequency response range of terahertz pulse coherent detection based on THz-induced time-resolved luminescence quenching
Man Zhang(张曼), Zhen-Gang Yang(杨振刚), Jin-Song Liu(刘劲松), Ke-Jia Wang(王可嘉), Jiao-Li Gong(龚姣丽), Sheng-Lie Wang(汪盛烈). Chin. Phys. B, 2018, 27(6): 060204.
[11] Using the HgxMg(1-x) Te ternary compound as a room temperature photodetector: The electronic structure, charge transport, and response function of the energetic electromagnetic radiation
Ghasemi Hasan, Mokhtari Ali. Chin. Phys. B, 2018, 27(5): 053101.
[12] Comment on “Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals” by Si-Qi Zhang et al.
Hai-Feng Zhang(章海锋). Chin. Phys. B, 2018, 27(1): 014205.
[13] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[14] Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells
Shitao Liu(刘诗涛), Zhijue Quan(全知觉), Li Wang(王立). Chin. Phys. B, 2017, 26(3): 038104.
[15] Effect of NO annealing on charge traps in oxide insulator and transition layer for 4H-SiC metal-oxide-semiconductor devices
Yifan Jia(贾一凡), Hongliang Lv(吕红亮), Yingxi Niu(钮应喜), Ling Li(李玲), Qingwen Song(宋庆文), Xiaoyan Tang(汤晓燕), Chengzhan Li(李诚瞻), Yanli Zhao(赵艳黎), Li Xiao(肖莉), Liangyong Wang(王梁永), Guangming Tang(唐光明), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2016, 25(9): 097101.
No Suggested Reading articles found!