Abstract In this paper, we have numerically solved the multi-fluid problems using an operator-split two-step high-resolution Godunov PPM (parabolic piecewise method) for the flow in complex geometries. By using the front capturing method, the PPM integrator captures the interface in the solution process. The basic multi-fluid integrator is coupled to a Cartesian grid algorithm where a VOF (volume of fluid) representation of the fluid interface is also used. As an application of this method, we test the 2D interfacial advection example and simulate an experimental hypervelocity launcher model from Sandia National Laboratories. The computational design of the hypervelocity launcher is also given in the paper.
Received: 02 March 2004
Revised: 01 July 2004
Accepted manuscript online:
Fund: Project supported by the Foundation of China Academy of Engineering Physics (Gtant No 20040650).
Cite this article:
Bai Jing-Song (柏劲松), Li Ping (李平), Zhang Zhan-Ji (张展冀), Hua Jing-Song (华劲松), Tan Hua (谭华) Application of the high-resolution Godunov method to the multi-fluid flow calculations 2004 Chinese Physics 13 1992
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.