Please wait a minute...
Chinese Physics, 2004, Vol. 13(1): 47-53    DOI: 10.1088/1009-1963/13/1/010
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Lattice Boltzmann method for three-dimensional moving particles in a Newtonian fluid

Fang Hai-Ping (方海平)ab, Chen Shi-Yib 
a Shanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, China; b  Department of Mechanical Engineering, the Johns Hopkins University, MD 21218, USA
Abstract  A lattice Boltzmann method is developed to simulate three-dimensional solid particle motions in fluids. In the present model, a uniform grid is used and the exact spatial location of the physical boundary of the suspended particles is determined using an interpolation scheme. The numerical accuracy and efficiency of the proposed lattice Boltzmann method is demonstrated by simulating the sedimentation of a single sphere in a square cylinder. Highly accurate simulation results can be achieved with few meshes, compared with the previous lattice Boltzmann methods. The present method is expected to find applications on the flow systems with moving boundaries, such as the blood flow in distensible vessels, the particle-flow interaction and the solidification of alloys.
Keywords:  lattice Boltzmann method      suspension      Newtonian fluid  
Received:  23 May 2003      Revised:  01 September 2003      Accepted manuscript online: 
PACS:  47.11.-j (Computational methods in fluid dynamics)  
  47.55.Kf (Particle-laden flows)  
  47.60.+i  
  87.19.Uv  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No 19904004).

Cite this article: 

Fang Hai-Ping (方海平), Chen Shi-Yi Lattice Boltzmann method for three-dimensional moving particles in a Newtonian fluid 2004 Chinese Physics 13 47

[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[7] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[8] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[9] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[10] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[11] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[12] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[13] Can secondary nucleation exist in ice banding of freezing colloidal suspensions?
Jia-Xue You(游家学), Jin-Cheng Wang(王锦程), Li-Lin Wang(王理林), Zhi-Jun Wang(王志军), Jun-Jie Li(李俊杰), Xin Lin(林鑫). Chin. Phys. B, 2016, 25(12): 128202.
[14] Transport coefficients and mechanical response in hard-disk colloidal suspensions
Bo-Kai Zhang(张博凯), Jian Li(李健), Kang Chen(陈康), Wen-De Tian(田文得), Yu-Qiang Ma(马余强). Chin. Phys. B, 2016, 25(11): 116101.
[15] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
No Suggested Reading articles found!