Please wait a minute...
Chinese Physics, 2002, Vol. 11(10): 1042-1046    DOI: 10.1088/1009-1963/11/10/314
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Single atomic manipulation and writing with scanning tunnelling microscopy at low temperatures

Gu Chang-Zhi (顾长志)a, K F Braunb, K H Riederb 
a State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China; b  Department of Physics, Institute of Experimental Physics, Berlin Freie University Arnimallee 14, 14195 Berlin, Germany
Abstract  In the work reported in this paper, we have used a low-temperature scanning tunnelling microscope (LT-STM) system to manipulate accurately single atoms. We show how we can use a LT-STM to image and modify a bulk Ag(111) surface and manipulate Ag atoms from substrate and evaporated adsorbates on Ag(111) substrates. We present a synergistic combination of STM-induced modification and ordered arrays of nanometre-scale structures. In particular, we demonstrate the ability to modify Ag atomic nanometre structures on the Ag(111) substrate, and some English letters and a Chinese character can be written by single Ag atoms coming from the substrate and evaporated adsorbates on Ag(111). In this way, we supply an effective basis to explore the fundamental physical properties of a nanometre structure and to develop nanotechnology with a `bottom-up' approach.
Keywords:  low-temperature scanning tunnelling microscope      single atomic manipulation      artificial nanometre structure  
Received:  27 March 2002      Revised:  20 June 2002      Accepted manuscript online: 
PACS:  68.47.De (Metallic surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  

Cite this article: 

Gu Chang-Zhi (顾长志), K F Braun, K H Rieder Single atomic manipulation and writing with scanning tunnelling microscopy at low temperatures 2002 Chinese Physics 11 1042

[1] Collective excitations and quantum size effects on the surfaces of Pb(111) films: An experimental study
Yade Wang(王亚德), Zijian Lin(林子荐), Siwei Xue(薛思玮), Jiade Li(李佳德), Yi Li(李毅), Xuetao Zhu(朱学涛), and Jiandong Guo(郭建东). Chin. Phys. B, 2021, 30(7): 077308.
[2] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
[3] Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays
Afshari-Bavil Mehdi, Xiao-Ping Lou(娄小平), Ming-Li Dong(董明利), Chuan-Bo Li(李传波), Shuai Feng(冯帅), Parsa Saviz, Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2018, 27(12): 124204.
[4] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
[5] Indenter size effect on the reversible incipient plasticity of Al (001) surface: Quasicontinuum study
Tang Dan (唐丹), Shao Yu-Fei (邵宇飞), Li Jiu-Hui (李久会), Zhao Xing (赵星), Qi Yang (祁阳). Chin. Phys. B, 2015, 24(8): 086805.
[6] Analysis of phase shift of surface plasmon polaritons at metallic subwavelength hole arrays
Li Jiang-Yan (李江艳), Qiu Kang-Sheng (邱康生), Ma Hai-Qiang (马海强). Chin. Phys. B, 2014, 23(10): 106804.
[7] Thickness dependence of the optical constants of oxidized copper thin films based on ellipsometry and transmittance
Gong Jun-Bo (宫俊波), Dong Wei-Le (董伟乐), Dai Ru-Cheng (代如成), Wang Zhong-Ping (王中平), Zhang Zeng-Ming (张增明), Ding Ze-Jun (丁泽军). Chin. Phys. B, 2014, 23(8): 087802.
[8] First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh
Niu Wen-Xia (牛纹霞), Zhang Hong (张红), Gong Min (龚敏), Cheng Xin-Lu (程新路). Chin. Phys. B, 2013, 22(6): 066802.
[9] A compact frequency selective stop-band splitter by using Fabry–Perot nanocavity in a T-shape waveguide
M Afshari Bavil, Sun Xiu-Dong (孙秀冬). Chin. Phys. B, 2013, 22(4): 047808.
[10] Ar adsorptions on Al (111) and Ir (111) surfaces: a first-principles study
Niu Wen-Xia(牛纹霞) and Zhang Hong(张红) . Chin. Phys. B, 2012, 21(2): 026802.
[11] Rotation of hydrogen molecules during the dissociative adsorption on the Mg(0001) surface: a first-principles study
Li Yan-Fang(李艳芳), Yang Yu(杨宇), Sun Bo(孙博), Song Hong-Zhou(宋红州), Wei Ying-Hui(卫英慧), and Zhang Ping(张平). Chin. Phys. B, 2010, 19(5): 058201.
[12] Scanning tunneling microscopy study of surface reconstruction induced by N adsorption on Cu (100) surface
Dou Wei-Dong(窦卫东), Zhang Han-Jie(张寒洁), and Bao Shi-Ning(鲍世宁). Chin. Phys. B, 2010, 19(2): 026803.
[13] Manipulation and control of a single molecular rotor on Au (111) surface
Zhang Hai-Gang(张海刚), Mao Jin-Hai(毛金海), Liu Qi(刘奇), Jiang Nan(江楠), Zhou Hai-Tao(周海涛), Guo Hai-Ming(郭海明), Shi Dong-Xia(时东霞), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(1): 018105.
[14] Density functional theory calculations of tetracene on low index surfaces of copper crystal
Dou Wei-Dong(窦卫东), Zhang Han-Jie(张寒洁), and Bao Shi-Ning(鲍世宁). Chin. Phys. B, 2009, 18(1): 344-348.
[15] Formation of graphene on Ru(0001) surface
Pan Yi(潘毅), Shi Dong-Xia(时东霞), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2007, 16(11): 3151-3153.
No Suggested Reading articles found!