Please wait a minute...
Chinese Physics, 2000, Vol. 9(8): 561-564    DOI: 10.1088/1009-1963/9/8/001
GENERAL   Next  

EFFECTS OF NONHOLONOMIC CONSTRAINT ON LIE SYMMETRIES AND CONSERVED QUANTITIES OF LAGRANGIAN SYSTEMS

Zhang Rui-chao (张睿超), Chen Xiang-wei (陈向炜), Mei Feng-xiang (梅凤翔)
Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
Abstract  After a Lagrangian system is constrained by nonholonomic constraints, the determining equations, the structure equation and the form of conserved quantities corresponding to the Lie symmetries will change. Some symmetries vanish and under certain conditions some Lie symmetries still remain.
Keywords:  lagrangian system      nonholonomic constraint      lie symmetry      conserved quantity.  
Received:  07 January 2000      Revised:  24 February 2000      Accepted manuscript online: 
PACS:  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Project supported by the National Natural Science Foundation (Grant No. 19972010) and the Doctoral Program Foundation of Institution of Higher Education of Chian.

Cite this article: 

Zhang Rui-chao (张睿超), Chen Xiang-wei (陈向炜), Mei Feng-xiang (梅凤翔) EFFECTS OF NONHOLONOMIC CONSTRAINT ON LIE SYMMETRIES AND CONSERVED QUANTITIES OF LAGRANGIAN SYSTEMS 2000 Chinese Physics 9 561

[1] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[2] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[3] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[4] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong (陈爱永), Zhang Li-Na (章丽娜), Wen Shuang-Quan (温双全). Chin. Phys. B, 2013, 22(4): 040510.
[5] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[6] Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system
Fang Jian-Hui(方建会), Zhang Bin(张斌), Zhang Wei-Wei(张伟伟), and Xu Rui-Li(徐瑞莉) . Chin. Phys. B, 2012, 21(5): 050202.
[7] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2012, 21(4): 040201.
[8] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[9] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang(施沈阳) and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2011, 20(2): 021101.
[10] Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(12): 124501.
[11] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling(张美玲), Sun Xian-Ting(孙现亭), Wang Xiao-Xiao(王肖肖), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(11): 110202.
[12] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li(解银丽), Jia Li-Qun(贾利群), and Luo Shao-Kai(罗绍凯). Chin. Phys. B, 2011, 20(1): 010203.
[13] A new type of conserved quantity of Lie symmetry for the Lagrange system
Fang Jian-Hui(方建会). Chin. Phys. B, 2010, 19(4): 040301.
[14] Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration
Zhao Li(赵丽), Fu Jing-Li(傅景礼), and Chen Ben-Yong(陈本永). Chin. Phys. B, 2010, 19(1): 010301.
[15] A counterexample of the Euler condition: the Appell—Hamel dynamical system on a horizontally moving plate
Xu Shan-Shan(徐山杉), Li Shu-Min(李书民), and Berakdar Jamal . Chin. Phys. B, 2009, 18(8): 3131-3134.
No Suggested Reading articles found!