Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(8): 3131-3134    DOI: 10.1088/1674-1056/18/8/005
GENERAL Prev   Next  

A counterexample of the Euler condition: the Appell—Hamel dynamical system on a horizontally moving plate

Xu Shan-Shan(徐山杉)a), Li Shu-Min(李书民)a)b), and Berakdar Jamalc)
a Department of Modern Physics, University of Science and Technology of China, P. O. Box 4, Hefei 230026, China; Institut für Theoretische Physik, Universit\"at Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany; c Insitut für Physik, Martin-Luther-Universit\"at Halle-Wittenberg, Heinrich-Damerow-St. 4, 06120 Halle, Germany
Abstract  As a counterexample of the Euler condition for nonholonomic constraint problems [H. C. Shen, Acta Phys. Sin. 54, 2468 (2005)], we investigate the Apell--Hamel dynamical system on a horizontally moving plate. The inconsistency of the results with Newton mechanics suggests that the Euler condition is not a universal model for nonlinear nonholonomic systems. This is attributed to the fact that the virtual displacements so obtained are not normal to the constraint forces.
Keywords:  Euler condition      nonholonomic constraint      Appell--Hamel dynamical system      Newton solution  
Received:  25 September 2008      Revised:  25 November 2008      Accepted manuscript online: 
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10874169 and 10674125), and the National Basic Research Program of China (Grant No 2007CB925200), and Li Shu-Min is grateful to DAAD and DFG for financial support during his stay in Germany.

Cite this article: 

Xu Shan-Shan(徐山杉), Li Shu-Min(李书民), and Berakdar Jamal A counterexample of the Euler condition: the Appell—Hamel dynamical system on a horizontally moving plate 2009 Chin. Phys. B 18 3131

[1] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao (王肖肖), Han Yue-Lin (韩月林), Zhang Mei-Ling (张美玲), Jia Li-Qun (贾利群). Chin. Phys. B, 2013, 22(2): 020201.
[2] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong(王性忠), Fu Hao(付昊), and Fu Jing-Li(傅景礼) . Chin. Phys. B, 2012, 21(4): 040201.
[3] Lie symmetry and Hojman conserved quantity of a Nielsen equation in a dynamical system of relative motion with Chetaev-type nonholonomic constraint
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Xie Yin-Li(解银丽), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2011, 20(12): 124501.
[4] Unified symmetry of mechano-electrical systems with nonholonomic constraints
Li Yuan-Cheng(李元成), Xia Li-Li(夏丽莉), Liu Bing(刘冰), Jiao Zhi-Yong(焦志勇), and Wang Xiao-Ming(王小明). Chin. Phys. B, 2008, 17(5): 1545-1549.
[5] On the Rosen-Edelstein model andthe theoretical foundation of nonholonomicmechanics
Li Guang-Cheng(李广成) and Mei Feng-Xiang(梅凤翔). Chin. Phys. B, 2006, 15(11): 2496-2499.
[6] Non-Noether symmetrical conserved quantity for nonholonomic Vacco dynamical systems with variable mass
Qiao Yong-Fen (乔永芬), Li Ren-Jie (李仁杰), Zhao Shu-Hong (赵淑红). Chin. Phys. B, 2004, 13(11): 1790-1795.
[7] SYMMETRIES OF MECHANICAL SYSTEMS WITH NONLINEAR NONHOLONOMIC CONSTRAINTS
Guo Yong-xin (郭永新), Jiang Li-yan (姜丽妍), Yu Ying (于莹). Chin. Phys. B, 2001, 10(3): 181-185.
[8] CANONICAL FORMULATION OF NONHOLONOMIC CONSTRAINED SYSTEMS
Guo Yong-xin (郭永新), Yu Ying (于莹), Huang Hai-jun (黄海军). Chin. Phys. B, 2001, 10(1): 1-6.
[9] EFFECTS OF NONHOLONOMIC CONSTRAINT ON LIE SYMMETRIES AND CONSERVED QUANTITIES OF LAGRANGIAN SYSTEMS
Zhang Rui-chao (张睿超), Chen Xiang-wei (陈向炜), Mei Feng-xiang (梅凤翔). Chin. Phys. B, 2000, 9(8): 561-564.
No Suggested Reading articles found!