| SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience |
Prev
Next
|
|
|
Bifurcation dynamics govern sharp wave ripple generation and rhythmic transitions in hippocampal-cortical memory networks |
| Xin Jiang(姜鑫)1, Jialiang Nie(聂嘉良)1, Denggui Fan(樊登贵)2, and Lixia Duan(段利霞)1,† |
1 College of Science, North China University of Technology, Beijing 100144, China; 2 School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China |
|
|
|
|
Abstract This study investigates the bifurcation dynamics underlying rhythmic transitions in a biophysical hippocampal-cortical neural network model. We specifically focus on the membrane potential dynamics of excitatory neurons in the hippocampal CA3 region and examine how strong coupling parameters modulate memory consolidation processes. Employing bifurcation analysis, we systematically characterize the model’s complex dynamical behaviors. Subsequently, a characteristic waveform recognition algorithm enables precise feature extraction and automated detection of hippocampal sharp-wave ripples (SWRs). Our results demonstrate that neuronal rhythms exhibit a propensity for abrupt transitions near bifurcation points, facilitating the emergence of SWRs. Critically, temporal rhythmic analysis reveals that the occurrence of a bifurcation is not always sufficient for SWR formation. By integrating one-parameter bifurcation analysis with extremum analysis, we demonstrate that large-amplitude membrane potential oscillations near bifurcation points are highly conducive to SWR generation. This research elucidates the mechanistic link between changes in neuronal self-connection parameters and the evolution of rhythmic characteristics, providing deeper insights into the role of dynamical behavior in memory consolidation.
|
Received: 25 August 2025
Revised: 29 September 2025
Accepted manuscript online: 09 October 2025
|
|
PACS:
|
87.23.Kg
|
(Dynamics of evolution)
|
| |
87.19.ll
|
(Models of single neurons and networks)
|
| |
87.19.lv
|
(Learning and memory)
|
| |
87.10.Ed
|
(Ordinary differential equations (ODE), partial differential equations (PDE), integrodifferential models)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12272002 and 12372061), the R&D Program of Beijing Municipal Education Commission (Grant No. KM202310009004), the North China University of Technology (Grant No. 2023XN075-01), and the Youth Research Special Project of the North China University of Technology (Grant No. 2025NCUTYRSP051). |
Corresponding Authors:
Lixia Duan
E-mail: duanlx@ncut.edu.cn
|
Cite this article:
Xin Jiang(姜鑫), Jialiang Nie(聂嘉良), Denggui Fan(樊登贵), and Lixia Duan(段利霞) Bifurcation dynamics govern sharp wave ripple generation and rhythmic transitions in hippocampal-cortical memory networks 2025 Chin. Phys. B 34 128702
|
[1] Guskjolen A and Cembrowski M S 2023 Mol. Psychiatry 28 3207 [2] Kandel E R, Dudai Y and Mayford M R 2014 Cell 157 163 [3] Knowlton B J and Fanselow M S 1998 Curr. Opin. Neurobiol. 8 293 [4] Marshall L and Born J 2007 Trends Cogn. Sci. 11 442 [5] Aggleton J P and O’Mara S M 2022 Nat. Rev. Neurosci. 23 505 [6] Lamprecht R and LeDoux J 2004 Nat. Rev. Neurosci. 5 45 [7] Buckner R L, Kelley W M and Petersen S E 1999 Nat. Neurosci. 2 311 [8] Sommer M A 2003 Curr. Opin. Neurobiol. 13 663 [9] Bragin A, Engel J Jr, Wilson C L, Fried I and Mathern G W 1999 Epilepsia 40 127 [10] Lu N, Xing D Q, Sheng T and Lu W 2017 Acta Physiol. Sinica 69 647 [11] Roumis D K and Frank L M 2015 Curr. Opin. Neurobiol. 35 6 [12] Yang Y C, Li Y Z and Sun X J 2025 Nonlinear Dyn. 113 799 [13] Buzsaki G 2015 Hippocampus 25 1073 [14] Nokia M S and Penttonen M 2022 Front. Neural Circuits 16 885684 [15] Pfeiffer B E and Foster D J 2013 Nature 497 74 [16] Sadowski J H L P, Jones M W and Mellor J R 2016 Cell Rep. 14 1916 [17] Yonelinas A P, Ranganath C, Ekstrom A D and Wiltgen B J 2019 Nat. Rev. Neurosci. 20 364 [18] Roux L, Hu B, Eichler R, Stark E and Buzsaki G 2017 Nat. Neurosci. 20 845 [19] Si Y Y, Zhang H H and Shen Z 2025 Int. J. Bifurcat. Chaos 35 2550060 [20] Goutagny R, Gu N, Cavanagh C, Jackson J, Chabot J G, Quirion R, Krantic S and Williams S 2013 Eur. J. Neurosci. 37 1896 [21] Steriade M and Amzica F 2003 Epilepsia 44 9 [22] Marshall L, Helgadottir H, Molle M and Born J 2006 Nature 444 610 [23] Tsai Y T, Chan H L, Lee S T, Tu P H, Chang B L and Wu T 2010 Neurosci. Lett. 485 173 [24] Boutin A, Pinsard B, Bore A, Carrier J, Fogel S M and Doyon J 2018 Neuroimage 169 419 [25] Eschenko O, Molle M, Born J and Sara S J 2006 J. Neurosci. 26 12914 [26] Ghorbani M, Mehta M, Bruinsma R and Levine A J 2012 Phys. Rev. E 85 021908 [27] Gonzalez J, Cavelli M, Mondino A, Castro-Zaballa S, Brankack J, Draguhn A, Torterolo P and Tort A B L 2023 Pflugers Arch. 475 49 [28] Foroutannia A, Ghasemi M, Parastesh F, Jafari S and Perc M 2020 Nonlinear Dyn. 100 2699 [29] Foroutannia A, Nazarimehr F, Ghasemi M and Jafari S 2021 J. Theor. Biol. 528 110837 [30] Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, Doyle W, Buzsaki G, Devinsky O and Parra L C 2017 Nat. Commun. 8 1199 [31] Yang L, Zhang H H, Sun Z K, Du L and Chen G R 2024 Nonlinear Dyn. 112 7499 [32] Azimi A, Alizadeh Z and Ghorbani M 2021 Neuroimage 243 118485 [33] Girardeau G, Benchenane K, Wiener S I, Buzsaki G and Zugaro M B 2009 Nat. Neurosci. 12 1222 [34] Colgin L L 2016 Nat. Rev. Neurosci. 17 239 [35] Jia Y B, Gu H G and Wang X J 2025 Chaos 35 [36] Jefferys J G R, de la Prida L M, Wendling F, Bragin A, Avoli M, Timofeev I and da Silva F H L 2012 Prog. Neurobiol. 98 250 [37] Wang Z H, Ge Y T and Duan L X 2025 Chaos Solitons Fractals 196 116322 [38] Wang Z H, Wei X D and Duan L X 2025 Cogn. Neurodyn. 19 37 [39] Yuan Y, Chen Y D and Li X L 2016 Chin. Phys. B 25 084301 [40] Leminen M M, Virkkala J, Saure E, et al. 2017 Sleep 40 zsx003 [41] Geva-Sagiv M, Mankin E A, Eliashiv D, Epstein S, Cherry N, Kalender G, Tchemodanov N, Nir Y and Fried I 2023 Nat. Neurosci. 26 1100 [42] Ladenbauer J, Ladenbauer J, Kulzow N, de Boor R, Avramova E, Grittner U and Floel A 2017 J. Neurosci. 37 7111 [43] Yin L N, Han F and Wang Q Y 2024 Cogn. Neurodyn. 18 1895 [44] Fan D G, Chen J, Hou S G, Song Z Y, Baier G and Wang Q Y 2025 Chaos Solitons Fractals 191 115754 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|