Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(5): 054209    DOI: 10.1088/1674-1056/24/5/054209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

General design basis for a final optics assembly to decrease filamentary damage

Sun Xiao-Yan (孙晓艳)a b, Lu Xing-Qiang (卢兴强)a, Lü Feng-Nian (吕凤年)a, Zhang Guo-Wen (张国文)a, Zhang Zhen (张臻)a, Yin Xian-Hua (尹宪华)a, Fan Dian-Yuan (范滇元)a
a National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The high-power laser beam in the final optics assembly of high-power laser facilities is often modulated by contamination particles, which may cause local high light intensity, thereby increasing the filamentary damage probability for optical components. To study the general design basis for a final optics assembly to decrease the risk of filamentary damage, different-sized contamination particles deposited on a component surface are simulated to modulate a 351-nm laser beam based on the optical transmission theory, and the corresponding simulation results are analyzed statistically in terms of the propagation characteristic and the light field intensity distribution of the modulated laser beam. The statistical results show that component thickness and distance between components can to some extent be optimized to reduce the appearance of local high light intensity, and the general design basis of component thickness and arrangement are given for different control levels of particle sizes. Moreover, the statistical results can also predict the laser beam quality approximately under the existing optics design and environmental cleanliness. The optimized design for final optics assembly based on environmental cleanliness level is useful to prolong the lifetime of optics and enhance the output power of high-power laser facilities.

Keywords:  optical design      high power laser beam      contamination particles      component damage  
Received:  27 July 2014      Revised:  28 October 2014      Accepted manuscript online: 
PACS:  42.60.-v (Laser optical systems: design and operation)  
  42.25.Fx (Diffraction and scattering)  
  42.65.-k (Nonlinear optics)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 60707019).

Corresponding Authors:  Lu Xing-Qiang     E-mail:  xingqianglu@siom.ac.cn
About author:  42.60.-v; 42.25.Fx; 42.65.-k; 42.65.Jx

Cite this article: 

Sun Xiao-Yan (孙晓艳), Lu Xing-Qiang (卢兴强), Lü Feng-Nian (吕凤年), Zhang Guo-Wen (张国文), Zhang Zhen (张臻), Yin Xian-Hua (尹宪华), Fan Dian-Yuan (范滇元) General design basis for a final optics assembly to decrease filamentary damage 2015 Chin. Phys. B 24 054209

[1] Neauport J, Lamaignere L, Bercegol H, Pilon F and Birolleau J C 2005 Opt. Express 13 10163
[2] Genin F Y, Kozlowshi M R and Brusasco R 1997 Proc. SPIE 3047 978
[3] Mainguy S, Tovena-Pecault I and Garrec B L 2005 Proc. SPIE 5991 59910G
[4] Qiao Z F, Lu X Q, Zhao D F and Zhu B Q 2008 Chin. J. Laser 35 1328
[5] Hunt J T 1999 UCRL-ID-138120-98 [R] National Lgnition Facility Peformance Review, Lawrence Livermore National Laboratory, Livermore USA
[6] Hunt J T 2000 UCRL-ID-138120-99 [R] National Lgnition Facility Peformance Review, Lawrence Livermore National Laboratory, Livermore USA
[7] Wegner P J, Auerbach J M, Biesiada T A, Dixit S N, Lawson J K, Menapace J A, Parham T G, Swift D W, Whitman P K and Williams W H 2004 Proc. SPIE 5341 180
[8] Burnham A K, Hackel L A, Wegner P J, Parham T G, Hrubesh L W, Penetrante B M, Whitman P K, Demos S G, Menapace J A, Runkel M J, Fluss M J, Feit M D, Key M H and Biesiada T A 2002 Proc. SPIE 4679 173
[9] Génin F Y, Feit M D, Kozlowski M R, Rubenchik A M, Salleo A and Yoshiyama J 2000 Appl. Opt. 39 3654
[10] Peng T, Zhao J L, Li D, Ye Z J and Xie L P 2009 Chin. Phys. B 18 1884
[11] Wang Y W, Deng J Q, Chen L Z, Wen S C and You K M 2009 Chin. Phys. Lett. 26 024205
[12] Hunt J T, Manes K R and Renard P A 1993 Appl. Opt. 32 5973
[13] Gan R B, Lin L B, Lu Y, Liu Q, Zuo Z Y, Jiang X D, Huang Z X and Ye L 2001 High Power Laser and Particle Beams 13 603 (in Chinese)
[14] Meng X J, Liu H J, Wang F, Ren W Y, Zhang Z, An X Y, Huang J, Jiang X D and Wu W D 2013 High Power Laser and Particle Beams 25 2247 (in Chinese)
[15] Zhang G W, Lu X Q, Cao H B, Yin X H, Lv F N, Zhang Z, Li J H, Wang R G, Ma W X and Zhu J 2012 Acta. Phys. Sin. 61 024201 (in Chinese)
[16] Chen X Q, Chen Z Y, Pu J X, Zhu J Q and Zhang G W 2013 Acta. Phys. Sin. 62 044213 (in Chinese)
[17] Xu S Z, Zu X T and Yuan X D 2011 Chin. Opt. Lett. 9 061405
[18] Zhou L D, Su J Q, Li P, Wang W Y, Liu L Q, Zhang Y and Zhang X M 2011 Acta Phys. Sin. 60 024202 (in Chinese)
[19] Su Q Q, Zhang G W, Tao H and Pu J X 2011 Chin. J. Lasers 38 1002005 (in Chinese)
[20] Honig J, Norton M A, Hollingsworth W G, Donohue E E and Johnson M A 2005 Proc. SPIE 5647 129
[1] Optical design of common-aperture multispectral and polarization optical imaging system with wide field of view
Xin Liu(刘鑫), Jun Chang(常军), Shuai Feng(冯帅), Yu Mu(穆郁), Xia Wang(王霞), Zhao-Peng Xu(徐兆鹏). Chin. Phys. B, 2019, 28(8): 084201.
[2] Anti-detection technology of cat eye target based on decentered field lens
Da-Lin Song(宋大林), Jun Chang(常军), Yi-Fei Zhao(赵一菲), Ze-Xia Zhang(张泽霞). Chin. Phys. B, 2018, 27(9): 094220.
[3] Aberration correction of conformal dome based on rotated cylindrical lenses for ultra-wide field of regard
Linyao Yu(虞林瑶), Yongfeng Hong(洪永丰), Zhifeng Cheng(程志峰), Bao Zhang(张保). Chin. Phys. B, 2018, 27(1): 014202.
[4] Application of optical diffraction method in designing phase plates
Ze-Min Lei(雷泽民), Xiao-Yan Sun(孙晓艳), Feng-Nian Lv(吕凤年), Zhen Zhang(张臻), Xing-Qiang Lu(卢兴强). Chin. Phys. B, 2016, 25(11): 114201.
[5] Optical design of adjustable light emitting diode for different lighting requirements
Lu Jia-Ning (芦佳宁), Yu Jie (余杰), Tong Yu-Zhen (童玉珍), Zhang Guo-Yi (张国义). Chin. Phys. B, 2012, 21(12): 127105.
[6] Correcting dynamic residual aberrations of conformal optical systems using AO technology
Li Yan(李岩), Li Lin(李林), Huang Yi-Fan (黄一帆), and Du Bao-Lin(杜保林). Chin. Phys. B, 2009, 18(7): 2769-2773.
[7] Study on the design and Zernike aberrations of a segmented mirror telescope
Jiang Zhen-Yu(姜震宇), Li Lin(李林), and Huang Yi-Fan(黄一帆). Chin. Phys. B, 2009, 18(7): 2774-2778.
[8] Thin film design for advanced thermochromic smart radiator devices
Feng Yu-Dong(冯煜东), Wang Zhi-Min(王志民), Ma Ya-Li(马亚莉), and Zhang Fu-Jia(张福甲). Chin. Phys. B, 2007, 16(6): 1704-1709.
No Suggested Reading articles found!