Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 014203    DOI: 10.1088/1674-1056/ade1bf
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Evolution of angular-resolved rate of Thomson scattering in intense laser fields

Ying Shen(申颖)1, Xianghe Ren(任向河)2, and Jingtao Zhang(张敬涛)1,†
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China;
2 International School for Optoelectronic Engineering, QiLu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Abstract  By employing a full quantum theory of electron-photon scattering in intense laser fields, we calculate the angular-resolved radiation rate of the fundamental wave in Thomson scattering. We investigate the dependence of radiation rate on Euler angles and elucidate the underlying physical mechanism. The figure-8 profile of the radiation rate within the polarization plane is validated, while its evolution with respect to laser intensity and electron momentum is illustrated. Our findings reveal that in lower-intensity laser fields and for slow electron motion, the angular-resolved radiation rate exhibits distinct dipole emission characteristics. However, significant changes are observed at high laser intensities and/or large electron momenta, leading to pronounced alterations in the angular-resolved radiation rate. Remarkably similar variation patterns can be achieved by proportionally adjusting both laser intensity and electron momentum.
Keywords:  Thomson scattering      full quantum theory      relativistic effects      angular-resolved scattering rate  
Received:  03 March 2025      Revised:  05 June 2025      Accepted manuscript online:  06 June 2025
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.68.Mj (Scattering, polarization)  
  03.65.Nk (Scattering theory)  
  41.60.Dk (Transition radiation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074261) and the Natural Science Foundation of Shanghai (Grant No. 20ZR1441600). The authors thank suggestive discussion with Guo D S and Chen Y Y.
Corresponding Authors:  Jingtao Zhang     E-mail:  jtzhang@shnu.edu.cn

Cite this article: 

Ying Shen(申颖), Xianghe Ren(任向河), and Jingtao Zhang(张敬涛) Evolution of angular-resolved rate of Thomson scattering in intense laser fields 2026 Chin. Phys. B 35 014203

[1] Thomson J 1899 Philosophical Magazine and Journal of Science 47 253
[2] Gonoskov A, Blackburn T G, Marklund M and Bulanov S S 2022 Rev. Mod. Phys. 94 045001
[3] Khrennikov K,Wenz J, Buck A, Xu J, Heigoldt M, Veisz L and Karsch S 2015 Phys. Rev. Lett. 114 195003
[4] Sarri G, Corvan D J, Schumaker W, Cole J M, Di Piazza A, Ahmed H, Harvey C, Keitel C H, Krushelnick K, Mangles S P D, Najmudin Z, Symes D, Thomas A G R, Yeung M, Zhao Z and Zepf M 2014 Phys. Rev. Lett. 113 224801
[5] Chi Z 2022 Nuclear Inst. and Methods in Physics Research A 1033 166681
[6] Sarachii E S and Schappert G T 1970 Phys. Rev. D 1 2738
[7] Esarey E, Ride S K and Sprangle P 1993 Phys. Rev. E 48 3003
[8] Ride S K, Esarey E and Baine M 1995 Phys. Rev. E 52 5425
[9] Babzien M, Ben-Zvi I, Kusche K, Pavlishin I V, Pogorelsky I V, Siddons D P, Yakimenko V, Cline D, Zhou F, Hirose T, Kamiya Y, Kumita T, Omori T, Urakawa J and Yokoya K 1996 Phys. Rev. Lett. 96 054802
[10] Chen S Y, Maksimchuk A and Umstadter D 1998 Nature 396 653
[11] Gao J 2004 Phys. Rev. Lett. 93 243001
[12] Zhao S H, Lue Q Z, Yuan S Y and Li Y J 2011 Acta Phys. Sin. 60 054209 (in Chinese)
[13] Yan W, Fruhling C, Golovin G, Haden D, Luo J, Zhang P, Zhao B, Zhang J, Liu C, Chen M, Chen S, Banerjee S and Umstadter D 2017 Nat. Photon. 11 514
[14] Wang Y, Yang Q, Chang Y, Lin Z and Tian Y 2024 Chin. Phys. B 33 013301
[15] Chang Y, Wang Y, Wang C, Shen Y and Tian Y 2023 Chin. Phys. B 32 063201
[16] Tomassini Paolo, Bacci A, Cary J, Ferrario M, Giulietti A, Giulietti Danilo, Gizzi L A, Labate Luca, Serafini L, Petrillo Vittoria and Vaccarezza C 2008 IEEE Tran. Plasma. Sci. 36 1782
[17] Maroli C, Petrillo V, Tomassini P and Serafini L 2013 Phys. Rev. Spe. Top. Accerl. Beam 16 030706
[18] Kumita T, Kamiya Y, Babzien M, Ben-Zvi I, Kusche K, Pavlishin I V, Pogorelsky I V, Siddons D P, Yakimenko V, Hirose T, Omori T, Urakawa J, Yokoya K, Cline D and Zhou F 2010 Laser Phys. 16 267
[19] Li A K, Wang J X, Ren N, Zhu W J, Li X Y, Hoehn R and Kais S 2014 Laser Phys. 24 015302
[20] Heinzl T, Seipt D and Kampfer B 2010 Phys. Rev. A 81 022125
[21] Shao Z, Dong Q, Teng H, Li Z, Yue D, Liu Q,Wei Z and Zhang J 2023 Phys. Rev. A 107 053109
[22] Pratt B, Atkinson N, Hodge D, Romero M, Schulzke C, Sun Y, Ware M and Peatross J 2021 Phys. Rev. A 103 L031102
[23] Fruhling C, Wang J, Umstadter D, Schulzke C, Romero M, Ware M and Peatross J 2021 Phys. Rev. A 104 053519
[24] Salamin Y I and Faisal F H M 1996 Phys. Rev. A 54 4383
[25] Shen Y, Ren X and Zhang J 2025 J. Phys A 58 185701
[26] Guo D S and Aberg T 1988 J. Phys. A 21 4577
[27] Zhang J, Feng X, Xu Z and Guo D S 2004 Phys. Rev. A 69 043409
[28] Berestetskii V, Lifshitz E and Pitaevskii L 1982 Quantum Electrodynamics (Course of Theoretical Physics) (Butterworth, Washington DC), Ch. 101, P437 (in Chinese)
[29] Makarov D N 2023 Results in Physics 52 106790
[30] Dai D and Fu L 2022 Phys. Rev. A 105 013101
[31] Guo D S and Aberg T 1991 J. Phys. B 24 349
[32] Hu X, Wang H X and Guo D S 2008 Can. J. Phys. 86 863
[1] Influence of acceleration on relativistic nonlinear Thomson scattering in tightly focused linearly polarized laser pulses
Yifan Chang(常一凡), Yubo Wang(王禹博), Chang Wang(王畅), Yuting Shen(申雨婷), and Youwei Tian(田友伟). Chin. Phys. B, 2023, 32(6): 063201.
[2] Laser parameters affecting the asymmetric radiation of the electron in tightly focused intense laser pulses
Xing-Yu Li(李星宇), Wan-Yu Xia(夏婉瑜), You-Wei Tian(田友伟), and Shan-Ling Ren(任山令). Chin. Phys. B, 2023, 32(12): 124205.
[3] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[4] Studies on convergence and scaling law of Thomson backscattering spectra in strong fields
Han-Zhang Xie(谢含章), Chun Jiang(蒋纯), Bai-Song Xie(谢柏松). Chin. Phys. B, 2017, 26(12): 124101.
[5] Numerical simulation for all-optical Thomson scattering X-ray source
Tan Fang (谭放), Zhu Bin (朱斌), Han Dan (韩丹), Xin Jian-Ting (辛建婷), Zhao Zong-Qing (赵宗清), Cao Lei-Feng (曹磊峰), Gu Yu-Qiu (谷渝秋), Zhang Bao-Han (张保汉). Chin. Phys. B, 2014, 23(3): 034104.
[6] Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma
Jiang Chen-Fan-Fu(蒋陈凡夫), Zheng Jian(郑坚), and Zhao Bin(赵斌) . Chin. Phys. B, 2011, 20(9): 095202.
[7] Valence orbitals of W(CO)6 using electron momentum spectroscopy
Shi Le-Lei(石砳磊), Liu Kun(刘昆), Luo Zhi-Hong(罗志宏), Ning Chuan-Gang(宁传刚), and Deng Jing-Kang(邓景康) . Chin. Phys. B, 2011, 20(11): 113403.
[8] Thomson scattering off a pair (electron--positron) plasma
Zheng Jian (郑坚). Chin. Phys. B, 2006, 15(5): 1028-1034.
No Suggested Reading articles found!