Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 058902    DOI: 10.1088/1674-1056/adbd2b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Exploring the proper statistical proxy to distinguish random structures

Mei Xie(解梅), Fei Xie(谢飞), Baoyu Song(宋宝玉), Qiaoyu Guo(郭桥雨), and Xuechen Jiao(焦学琛)†
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Abstract  The canonical description of structures comprises two aspects: (1) basic structural elements and (2) arrangement pattern between those elements. This tidy description has been very successful and facilitates the development of structural physics tremendously, enabling the classification, comparison and analysis of an extremely wide range of structures, including crystals, quasi-crystals, liquid crystals, semi-crystalline materials and so on. However, it has been gradually realized that many novel materials and devices exhibit random structures in which either basic elements or arrangement patterns may not exist. With the rapid development of modern advanced materials, this type of apparently random structure pops up frequently, leaving researchers struggling with how to describe, classify and quantitatively compare them. This paper proposes the utilization of statistical characteristics as the major indicators for the description of apparently random structures. Specifically, we have explored many statistical properties, including power spectral density, histograms, structural complexity, entropic complexity, autocorrelation, etc., and found that autocorrelation may serve as a promising statistical proxy to distinguish similar-looking random structures. We discuss eight atomic force microscope images of random structures, demonstrating that autocorrelation can be used to distinguish them. In addition, 14 more diverse datasets are used to support this conclusion, including atomic force microscopy images of polymers and non-polymers, transmission electron microscopy images of nanocomposite layers and scanning electron microscopy images of non-polymers.
Keywords:  complexity      complex structure      autocorrelation  
Received:  11 November 2024      Revised:  11 November 2024      Accepted manuscript online:  06 March 2025
PACS:  89.75.-k (Complex systems)  
  89.75.Fb (Structures and organization in complex systems)  
  89.75.Kd (Patterns)  
Fund: This work is supported by the School Important Direction Project Cultivation Fund and Key Fund Project for Youth Innovation (Grant Nos. WK2310000101, YD2310002006, and BJ2310000055).
Corresponding Authors:  Xuechen Jiao     E-mail:  xjiao@ustc.edu.cn

Cite this article: 

Mei Xie(解梅), Fei Xie(谢飞), Baoyu Song(宋宝玉), Qiaoyu Guo(郭桥雨), and Xuechen Jiao(焦学琛) Exploring the proper statistical proxy to distinguish random structures 2025 Chin. Phys. B 34 058902

[1] Gidas B 1989 IEEE Transactions on Pattern Analysis and Machine Intelligence 11 164
[2] Lindeberg T 1998 International Journal of Computer Vision 30 79
[3] Buccigrossi RWand Simoncelli E P 1999 IEEE Transactions on Image Processing 8 1688
[4] Jinggang H and Mumford D 1999 IEEE Xplore 1 541
[5] Srivastava A, Lee A B, Simoncelli E P and Zhu S C 2003 Journal of Mathematical Imaging and Vision 18 17
[6] Munn B and Gong P L 2018 Phys. Rev. Lett. 121 058101
[7] Sinno Z, Caramanis C and Bovik A C 2018 IEEE Transactions on Image Processing. 27 3194
[8] Graham D J and Field D J 2008 Perception 37 1341
[9] Koch M, Denzler J and Redies C 2010 Plos One 5 8
[10] Foreman S, Giedt J, Meurice Y and Unmuth-Yockey J 2018 Phys. Rev. E 98 052129
[11] Crist B and Cohen J B 1979 Journal of Polymer Science Part B-Polymer Physics 17 1001
[12] Wilke W 1983 Colloid and Polymer Science 261 656
[13] Hindeleh A M and Hosemann R 1988 J. Phys. C-Solid State Phys. 21 4155
[14] Somashekar R and Somashekarappa H 1997 Journal of Applied Crystallography 30 147
[15] Haji-Akbari A, Engel M, Keys A S, Zheng X Y, Petschek R G, Palffy- Muhoray P and Glotzer S C 2009 Nature 462 773
[16] Keen D A and Goodwin A L 2015 Nature 521 303
[17] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[18] Oganov A R, Pickard C J, Zhu Q and Needs R J 2019 Nature Reviews Materials 4 331
[19] LeSar R 2014 Annual Review of Condensed Matter Physics 5 375
[20] Sólyom J 2007 Fundamentals of the Physics of Solids (Heidelberg: Springer Berlin) 13
[21] Böer K W and Pohl U W 2020 Semiconductor Physics (Cham: Springer) 59
[22] Jiao X C, Ye L and Ade H 2017 Advanced Energy Materials 7 1700084
[23] Rivnay J, Noriega R, Kline R J, Salleo A and Toney M F 2011 Phys. Rev. B 84 045203
[24] Keil P, Lützenkirchen-Hecht D, Novikov D V, Hahn U and Frahm R 2001 Nuclear Instruments and Methods in Physics Research Section a- Accelerators Spectrometers Detectors and Associated Equipment 467 275
[25] Liu F, Gu Y, Shen X B, Ferdous S, Wang H W and Russell T P 2013 Progress in Polymer Science 38 1990
[26] Fradler C, Rath T, Dunst S, Letofsky-Papst I, Saf R, Kunert B, Hofer F, Resel R and Trimmel G 2014 Solar Energy Materials and Solar Cells 124 117
[27] Hernández-Lemus E 2021 Frontiers in Physics 9 641859
[28] Lee J Y, Song K W, Ku J R, Sung T H and Moon D K 2011 Solar Energy Materials and Solar Cells 95 3377
[29] Bies A J, Boydston C R, Taylor R P and Sereno M E 2016 Journal of Environmental Psychology 47 155
[30] Knill D C, Field D and Kersten D 1990 J. Opt. Soc. Am. A 7 1113
[31] Adami C 2002 Bioessays 24 1085
[32] Stephens G J, Mora T, Tkacik G and Bialek W 2013 Phys. Rev. Lett. 110 018701
[33] Bolzani V D 2013 Planta Medica 79 10
[34] Crutchfield J P and Young K 1989 Phys. Rev. Lett. 63 105
[35] LopezRuiz R, Mancini H L and Calbet X 1995 Phys. Lett. A 209 321
[36] Cha S H 2007 International Journal of Mathematical Models and Methods in Applied Sciences 1 300-307
[37] Zanette D H 2018 Plos One 13 11
[38] Wolpert D H and Macready W 2007 Complexity 12 77
[39] Wolpert D H and Macready W G 1997 IEEE Transactions on Evolutionary Computation 1 67
[40] Bagrov A A, Iakovlev I A, Iliasov A A, KatsnelsonMI and Mazurenko V V 2020 Proc. Natl. Acad. Sci. USA 117 30241
[41] Aaronson S, Carroll S and Ouellette L 2014 arXiv: Statistical Mechanics CALT-68-2927
[42] Kolin D L and Wiseman P W 2007 Cell Biochemistry and Biophysics 49 141
[43] Robertson C and George S C 2012 Journal of Biomedical Optics 17 080801
[44] Rubin D M 2004 Journal of Sedimentary Research 74 160
[1] Multiscale structural complexity analysis of neuronal activity in suprachiasmatic nucleus: Insights from tetrodotoxin-induced disruptions
Ping Wang(王萍), Changgui Gu(顾长贵), and Huijie Yang(杨会杰). Chin. Phys. B, 2025, 34(4): 048701.
[2] A global model of intensity autocorrelation to determine laser pulse duration
Yufei Peng(彭雨菲), Liqiang Liu(刘励强), Lihong Hong(洪丽红), and Zhiyuan Li(李志远). Chin. Phys. B, 2024, 33(5): 054207.
[3] A novel variable-order fractional chaotic map and its dynamics
Zhouqing Tang(唐周青), Shaobo He(贺少波), Huihai Wang(王会海), Kehui Sun(孙克辉), Zhao Yao(姚昭), and Xianming Wu(吴先明). Chin. Phys. B, 2024, 33(3): 030503.
[4] On fractional discrete financial system: Bifurcation, chaos, and control
Louiza Diabi, Adel Ouannas, Amel Hioual, Shaher Momani, and Abderrahmane Abbes. Chin. Phys. B, 2024, 33(10): 100201.
[5] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[6] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[7] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[8] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[9] Controlled unknown quantum operations on hybrid systems
Yong He(何勇), Ming-Xing Luo(罗明星). Chin. Phys. B, 2016, 25(12): 120304.
[10] The spin dynamics of the random transverse Ising chain with a double-Gaussian disorder
Liu Zhong-Qiang (刘中强), Jiang Su-Rong (姜素蓉), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2014, 23(8): 087505.
[11] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[12] Complexity analyses of multi-wing chaotic systems
He Shao-Bo (贺少波), Sun Ke-Hui (孙克辉), Zhu Cong-Xu (朱从旭). Chin. Phys. B, 2013, 22(5): 050506.
[13] Correlation between detrended fluctuation analysis and the Lempel–Ziv complexity in nonlinear time series analysis
Tang You-Fu (唐友福), Liu Shu-Lin (刘树林), Jiang Rui-Hong (姜锐红), Liu Ying-Hui (刘颖慧). Chin. Phys. B, 2013, 22(3): 030504.
[14] Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel–Ziv complexity
Luo Xi-Liu(罗昔柳), Wang Jiang(王江), Han Chun-Xiao(韩春晓), Deng Bin(邓斌), Wei Xi-Le(魏熙乐), and Bian Hong-Rui(边洪瑞) . Chin. Phys. B, 2012, 21(2): 028701.
[15] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
No Suggested Reading articles found!