Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030504    DOI: 10.1088/1674-1056/22/3/030504
GENERAL Prev   Next  

Correlation between detrended fluctuation analysis and the Lempel–Ziv complexity in nonlinear time series analysis

Tang You-Fu (唐友福)a b, Liu Shu-Lin (刘树林)a, Jiang Rui-Hong (姜锐红)a, Liu Ying-Hui (刘颖慧)a
a School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072, China;
b School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
Abstract  We focus on the study of the correlation between the detrended fluctuation analysis (DFA) and the Lempel–Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamical systems including logistic map and Duffing model are investigated. Moreover, the influences of the Gaussian random noise on both DFA and LZC are analyzed. The results show a high correlation between DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent α and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between DFA and LZC is applied to the feature extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained.
Keywords:  nonlinear time series      detrended fluctuation analysis      Lempel–Ziv complexity      correlation coefficient  
Received:  18 July 2012      Revised:  28 August 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51175316) and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103108110006).
Corresponding Authors:  Liu Shu-Lin     E-mail:  lsl346@shu.edu.cn

Cite this article: 

Tang You-Fu (唐友福), Liu Shu-Lin (刘树林), Jiang Rui-Hong (姜锐红), Liu Ying-Hui (刘颖慧) Correlation between detrended fluctuation analysis and the Lempel–Ziv complexity in nonlinear time series analysis 2013 Chin. Phys. B 22 030504

[1] Huang N E, Shen Z and Long S R 1998 Proc. R. Soc. London, Ser. A 454 903
[2] Srinivasan K, Panickar P, Raman G, Kim B H and Williams D R 2009 J. Sound Vib. 323 910
[3] Dwivedi Y and Rao S S 2011 J. Time Ser. Anal. 32 68
[4] Andel J, Netuka I and Ranocha P 2007 Stat. 41 279
[5] Kalvoda T and Hwang Y R 2010 Sens. Actuators A 161 39
[6] Yuan Y, Li Y, Mandicb D P and Yang B J 2009 Chin. Phys. B 18 958
[7] Cong R, Liu S L and Ma R 2008 Acta Phys. Sin. 57 7487 (in Chinese)
[8] Wu T Y, Chen J C and Wang C 2012 Mech. Syst. Sig. Process 30 103
[9] Tang Y F, Liu S L, Lei N, Jiang R H and Liu Y H 2012 Acta Phys. Sin. 61 170504 (in Chinese)
[10] Xie F, Yang R and Zhang B 2012 Acta Phys. Sin. 61 110504 (in Chinese)
[11] Luo X L, Wang J and Han C X 2012 Chin. Phys. B 21 028701
[12] Peng C K, Buldyrev S V and Havlin S 1994 Phys. Rev. E 49 1685
[13] Zhu S S, Xu Z X, Yin K X and Xu Y L 2011 Chin. Phys. B 20 050503
[14] Zhou Y, Yu Z G and Leung Y 2011 Chin. Phys. B 20 090507
[15] Li S S, Lan J and Han B 2012 Chin. Phys. B 21 064601
[16] Burt T and Worrall F 2007 Hydrocarb Process 21 3529
[17] Peng C K, Havlin S, Stanley H E and Goldberger A L 1995 Chaos 5 82
[18] deMoura E P, Vieira A P, Irma M A S and Silva A A 2009 Mech. Syst. Sig. Process 23 682
[19] Daw C S, Finney C E A and Tracy E R 2003 Rev. Sci. Instrum. 74 915
[20] Hong H B and Liang M 2009 J. Sound Vib. 320 452
[21] Hou W, Feng G L and Dong W J 2005 Acta Phys. Sin. 54 3940 (in Chinese)
[22] Wang K, Guan X P, Ding X F and Qiao J M 2010 Acta Phys. Sin. 59 6859 (in Chinese)
[1] Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations
Jian Zhong(钟剑), Gang Dong(董钢), Yimei Sun(孙一妹), Zhaoyang Zhang(张钊扬), Yuqin Wu(吴玉琴). Chin. Phys. B, 2016, 25(11): 110502.
[2] Application of long-range correlation and multi-fractal analysis for the depiction of drought risk
Wei Hou(侯威), Peng-Cheng Yan(颜鹏程), Shu-Ping Li(李淑萍), Gang Tu(涂刚), Jing-Guo Hu(胡经国). Chin. Phys. B, 2016, 25(1): 019201.
[3] Scintillation characterization for multiple incoherent uplink Gaussian beams
Wu Wu-Ming (吴武明), Ning Yu (宁禹), Ma Yan-Xing (马阎星), Xi Fen-Jie (习锋杰), Xu Xiao-Jun (许晓军). Chin. Phys. B, 2014, 23(9): 099502.
[4] Relationships of exponents in multifractal detrended fluctuation analysis and conventional multifractal analysis
Zhou Yu(周煜), Leung Yee(梁怡), and Yu Zu-Guo(喻祖国) . Chin. Phys. B, 2011, 20(9): 090507.
[5] Effects of quantization on detrended fluctuation analysis
Zhu Song-Sheng(朱松盛), Xu Ze-Xi(徐泽西), Yin Kui-Xi(殷奎喜), and Xu Yin-Lin(徐寅林). Chin. Phys. B, 2011, 20(5): 050503.
[6] Long-range correlation analysis of urban traffic data
Sheng Peng (盛鹏), Wang Jun-Feng (王俊峰), Tang Tie-Qiao (唐铁桥), Zhao Shu-Long (赵树龙). Chin. Phys. B, 2010, 19(8): 080205.
[7] Spin-image surface matching based target recognition in laser radar range imagery
Wang Li(王丽), Sun Jian-Feng(孙剑峰), and Wang Qi(王骐). Chin. Phys. B, 2010, 19(10): 104203.
[8] Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient
Jiang Fan(江凡) and Ding Wei(丁玮). Chin. Phys. B, 2010, 19(10): 106101.
[9] Robust stability analysis for Markovian jumping stochastic neural networks with mode-dependent time-varying interval delay and multiplicative noise
Zhang Hua-Guang(张化光), Fu Jie(浮洁), Ma Tie-Dong(马铁东), and Tong Shao-Cheng(佟绍成). Chin. Phys. B, 2009, 18(8): 3325-3336.
[10] Small-time scale network traffic prediction based on a local support vector machine regression model
Meng Qing-Fang(孟庆芳), Chen Yue-Hui(陈月辉), and Peng Yu-Hua(彭玉华). Chin. Phys. B, 2009, 18(6): 2194-2199.
[11] Effects of signal modulation and coloured cross-correlation of coloured noises on the diffusion of a harmonic oscillator
Liu Li(刘立), Zhang Liang-Ying(张良英), and Cao Li(曹力). Chin. Phys. B, 2009, 18(10): 4182-4186.
[12] A new method of determining the optimal embedding dimension based on nonlinear prediction
Meng Qing-Fang(孟庆芳), Peng Yu-Hua(彭玉华), and Xue Pei-Jun(薛佩军). Chin. Phys. B, 2007, 16(5): 1252-1257.
[13] On temporal evolution of precipitation probability of the Yangtze River delta in the last 50 years
Feng Guo-Lin (封国林), Dong Wen-Jie (董文杰), Li Jing-Ping (李建平). Chin. Phys. B, 2004, 13(9): 1582-1587.
[14] Determining the minimum embedding dimension of nonlinear time series based on prediction method
Bian Chun-Hua (卞春华), Ning Xin-Bao (宁新宝). Chin. Phys. B, 2004, 13(5): 633-636.
[15] Determining the input dimension of a neural network for nonlinear time series prediction
Zhang Sheng (张胜), Liu Hong-Xing (刘红星), Gao Dun-Tang (高敦堂), Du Si-Dan (都思丹). Chin. Phys. B, 2003, 12(6): 594-598.
No Suggested Reading articles found!