Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 057102    DOI: 10.1088/1674-1056/adb9cd
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Relativistic non-Fermi liquid fixed point in (2+1)-dimensional birefringent Dirac fermions interacting with electromagnetic fields

Wan-Zi Sun(孙万梓)1,2, Kai Liu(刘恺)1,2, Wu-Ming Liu(刘伍明)1,2,3, and Cheng-Xi Li(李成蹊)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The system consisting of (2+1)-dimensional quasirelativistic birefringent Dirac fermions with Coulomb interactions and retarded current-current interactions is described by a quantum field theory similar to reduced quantum electrodynamics. We used the perturbative renormalization group method to study the low-energy behavior of the system and found that it flows to a fixed point of the non-Fermi liquid composed of relativistic pseudospin-1/2 Dirac fermions in the deep infrared limit. At the fixed point, the fermion Green function exhibits a finite anomalous dimension, and the residue of the quasiparticle pole vanishes in a power-law fashion. Our research provides new theoretical perspectives for understanding the origin of spin-1/2 fermions in the standard model.
Keywords:  non-Fermi liquid fixed point      birefringent Dirac fermions      perturbative renormalization group      Fermi velocity renormalization  
Received:  30 December 2024      Revised:  25 February 2025      Accepted manuscript online:  25 February 2025
PACS:  71.10.Hf (Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems)  
  11.10.Hi (Renormalization group evolution of parameters)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1400243), the National Natural Science Foundation of China (Grant Nos. 61835013, 12174461, and 12234012), and Space Application System of China Manned Space Program.
Corresponding Authors:  Cheng-Xi Li     E-mail:  lcxtom@icloud.com

Cite this article: 

Wan-Zi Sun(孙万梓), Kai Liu(刘恺), Wu-Ming Liu(刘伍明), and Cheng-Xi Li(李成蹊) Relativistic non-Fermi liquid fixed point in (2+1)-dimensional birefringent Dirac fermions interacting with electromagnetic fields 2025 Chin. Phys. B 34 057102

[1] Liu Z H, Vojta M, Assaad F F and Janssen L 2022 Phys. Rev. Lett. 128 087201
[2] Boyack R, Yerzhakov H and Maciejko J 2021 Euro. Phys. J. Spec. Top. 230 979
[3] Schwab J, Janssen L, Sun K, Meng Z Y, Herbut I F, VojtaMand Assaad F F 2022 Phys. Rev. Lett. 128 157203
[4] Hao Y, Pan G, Sun K, Meng Z Y and Qi Y 2022 Chin. Phys. Lett. 39 097102
[5] Hou Q, Song M, Xu X, Wang Y, Dong C, Feng Y, He M, Liu Y, Cao L, Wang J, et al. 2023 Chin. Phys. B 32 087501
[6] Jian S K and Yao H 2017 Phys. Rev. B 96 195162
[7] Roy B, Goswami P and Juričić V 2018 Phys. Rev. B 97 205117
[8] Kennett M P, Komeilizadeh N, Kaveh K and Smith P M 2011 Phys. Rev. A 83 053636
[9] Roy B, Smith P M and Kennett M P 2012 Phys. Rev. B 85 235119
[10] Komeilizadeh N and Kennett M P 2014 Phys. Rev. B 90 045131
[11] Guo H M, Wang L and Scalettar R 2018 Phys. Rev. B 97 235152
[12] Wang Y X and Li F 2019 Phys. Rev. B 99 245126
[13] Teber S 2012 Phys. Rev. D 86 025005
[14] Kotikov A and Teber S 2014 Phys. Rev. D 89 065038
[15] Kotikov A and Teber S 2016 Phys. Rev. D 94 114010
[16] Alves V S, Junior R O, Marino E and Nascimento L O 2017 Phys. Rev. D 96 034005
[17] Magalhães G C, Alves V S, Marino E C and Nascimento L O 2020 Phys. Rev. D 101 116005
[18] Fernández L, Alves V S, Nascimento L O, Peña F, Gomes M and Marino E 2020 Phys. Rev. D 102 016020
[19] González J, Guinea F and Vozmediano M 1994 Nucl. Phys. B 424 595
[20] Isobe H and Nagaosa N 2016 Coulomb interaction effect in tilted Weyl fermion in two dimensions, APS March Meeting Abstracts, Vol. 2016 pp. S13-003
[21] Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301
[22] Sørensen A S, Demler E and Lukin M D 2005 Phys. Rev. Lett. 94 086803
[23] Dagotto E, Fradkin E and Moreo A 1986 Phys. Lett. B 172 383
[24] Murshed S A and Roy B 2024 arXiv preprint arXiv: 2407.18250
[25] Roy B, Kennett M P, Yang K and Juričić V 2018 Phys. Rev. Lett. 121 157602
[26] Roy B and Juričić V 2020 Phys. Rev. Res. 2 012047
[27] Peskin M E 2018 An introduction to quantum field theory (CRC Press)
[28] Murshed S A and Roy B 2024 J. High Energy Phys. 2024 143
[29] Carrington M 2019 Phys. Rev. B 99 115432
[30] Veltman M et al. 1972 Nucl. Phys. B 44 189
[31] Isobe H and Nagaosa N 2012 Phys. Rev. B 86 165127
[32] Roy B, Juričić V and Herbut I F 2016 J. High Energy Phys. 2016 18
[33] Pozo O, Ferreiros Y and Vozmediano M A 2018 Phys. Rev. B 98 115122
[34] Srednicki M 2007 Quantum field theory (Cambridge University Press)
[35] Isobe H and Fu L 2019 Phys. Rev. Res. 1 033206
[36] Nayak C and Wilczek F 1994 Nucl. Phys. B 417 359
[37] Bruus H and Flensberg K 2004 Many-body quantum theory in condensed matter physics: an introduction (OUP Oxford)
[38] Sachdev S 2024 arXiv:2407.15919 [cond-mat.str-el]
[39] Ward J C 1950 Phys. Rev. 78 182
[1] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴), Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[2] Symmetry-constrained quantum coupling in non-Fermi-liquid transport
Rong Li(李荣) and Zhen-Su She(佘振苏). Chin. Phys. B, 2023, 32(6): 067104.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[5] Phase diagram, correlations, and quantum critical point in the periodic Anderson model
Jian-Wei Yang(杨建伟), Qiao-Ni Chen(陈巧妮). Chin. Phys. B, 2018, 27(3): 037101.
[6] Sudden birth and sudden death of thermal fidelity in a two-qubit system
Qin Li-Guo(秦立国), Tian Li-Jun(田立君), Jiang Ying(姜颖), and Zhang Hong-Biao(张宏标) . Chin. Phys. B, 2012, 21(5): 057101.
No Suggested Reading articles found!