Anisotropy of average potential energy of passive plate in bacterial suspensions
Luhui Ning(宁鲁慧)1,2,†, Ziwei Xiao(肖紫薇)2, Yuxin Tian(田宇鑫)3, Hongwei Zhu(朱红伟)4, Yi Peng(彭毅)5,6, Peng Liu(刘鹏)3, Ning Zheng(郑宁)3, Mingcheng Yang(杨明成)5,6,7, and Junqing Chen(陈君青)1,2,‡
1 Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum-Beijing, Beijing 102249, China; 2 Basic Research Center for Energy Interdisciplinary, College of Science, China University of Petroleum-Beijing, Beijing 102249, China; 3 School of Physics, Beijing Institute of Technology, Beijing 100081, China; 4 School of Physical Science and Technology, Key Laboratory of Magnetism and Magnetic Materials for Higher Education in lnner Mongolia Autonomous Region, Baotou Teachers' College, Baotou 014030, China; 5 Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 6 University of Chinese Academy of Sciences, Beijing 100049, China; 7 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract We conduct optical-tweezers experiments to investigate the average potential energies of passive plates harmonically trapped in bacterial suspensions. Our results show that the mean potential energies along both the major and minor axes increase with bacterial concentration but decrease with trap stiffness. Notably, the average potential energy along the major axis consistently exceeds that along the minor axis. This discrepancy from equilibrium systems is primarily attributed to the distinct bacterial flow fields and direct bacterium-plate collisions near the major and minor axes, as evidenced by the higher orientational order around the plate along the major compared to the minor axis, despite identical bacterial densities in these regions. Our findings highlight the critical role of hydrodynamic interactions in determining the potential energy of passive objects immersed in an active bath.
Fund: We acknowledge the supports of the National Natural Science Foundation of China (Grant Nos. 12304245, 12374205, 12475031, and 12364029), the Science Foundation of China University of Petroleum, Beijing (Grant Nos. 2462023YJRC031 and 2462024BJRC010), the National Key Laboratory of Petroleum Resources and Engineering (Grant No. PRE/DX-2407), the Natural Science Foundation of Shandong Province (Grant No. ZR2024YQ017), the Young Elite Scientist Sponsorship Program by BAST (Grant No. BYESS2023300), and the Beijing Institute of Technology Research Fund Program for Young Scholars. This work was also supported by Beijing National Laboratory for Condensed Matter Physics (Grant Nos. 2023BNLCMPKF014 and 2024BNLCMPKF009).
Luhui Ning(宁鲁慧), Ziwei Xiao(肖紫薇), Yuxin Tian(田宇鑫), Hongwei Zhu(朱红伟), Yi Peng(彭毅), Peng Liu(刘鹏), Ning Zheng(郑宁), Mingcheng Yang(杨明成), and Junqing Chen(陈君青) Anisotropy of average potential energy of passive plate in bacterial suspensions 2025 Chin. Phys. B 34 048201
[1] Riedel I H, Kruse K and Howard J 2005 Science 309 300 [2] Friedrich B M and Jülicher F 2007 Proc. Natl. Acad. Sci. USA 104 13256 [3] Rigato A, Miyagi A, Scheuring S and Rico F 2017 Nat. Phys. 13 771 [4] Tailleur J and Cates M E 2008 Phys. Rev. Lett. 100 218103 [5] Peruani F, Starruß J, Jakovljevic V, Søgaard-Andersen L, Deutsch A and Bär M 2012 Phys. Rev. Lett. 108 098102 [6] Wioland H, Woodhouse F G, Dunkel J, Kessler J O and Goldstein R E 2013 Phys. Rev. Lett. 110 268102 [7] Huang Y, Lin Z and He Q 2024 Adv. Funct. Mater. 34 2311136 [8] Liu J, Wu Y, Li Y, Yang L, Wu H and He Q 2023 Sci. Adv. 9 eabg3015 [9] Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936 [10] Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F and Viale M 2010 Proc. Natl. Acad. Sci. USA 107 11865 [11] Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M and Walczak A M 2012 Proc. Natl. Acad. Sci. USA 109 4786 [12] Pearce D J, Miller A M, Rowlands G and Turner M S 2014 Proc. Natl. Acad. Sci. USA 111 10422 [13] Rio K W, Dachner G C and Warren W H 2018 Proc. Natl. Acad. Sci. USA 285 20180611 [14] Bottinelli A, Sumpter D T J and Silverberg J L 2016 Phys. Rev. Lett. 117 228301 [15] Low D J 2000 Nature 407 465 [16] Tan H, Yu C, Lu Z, Zhou Y and Yan D 2017 Soft Matter 13 6178 [17] Soto R and Golestanian R 2014 Phys. Rev. Lett. 112 068301 [18] Shi X Q, Fausti G, Chaté H, Nardini C and Solon A 2020 Phys. Rev. Lett. 125 168001 [19] Digregorio P, Levis D, Suma A, Cugliandolo L F, Gonnella G and Pagonabarraga I 2018 Phys. Rev. Lett. 121 098003 [20] Caprini L, Marini Bettolo Marconi U and Puglisi A 2020 Phys. Rev. Lett. 124 078001 [21] Omar A K, Klymko K, GrandPre T and Geissler P L 2021 Phys. Rev. Lett. 126 188002 [22] Sokolov A and Aranson I S 2012 Phys. Rev. Lett. 109 248109 [23] Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F, et al. 2020 Proc. Natl. Acad. Sci. USA 117 11901 [24] Großmann R, Aranson I S and Peruani F 2020 Nat. Commun. 11 1 [25] Keta Y E, Fodor E, van Wijland F, Cates M E and Jack R L 2021 Phys. Rev. E 103 022603 [26] Leptos K C, Guasto J S, Gollub J P, Pesci A I and Goldstein R E 2009 Phys. Rev. Lett. 103 198103 [27] Guzmán-Lastra F, Löwen H and Mathijssen A J 2021 Nat. Commun. 12 1 [28] Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84 3017 [29] Peng Y, Lai L, Tai Y S, Zhang K, Xu X and Cheng X 2016 Phys. Rev. Lett. 116 068303 [30] Ning L, Lou X, Ma Q, Yang Y, Luo N, Chen K, Meng F, Zhou X, Yang M and Peng Y 2023 Phys. Rev. Lett. 131 158301 [31] Liu P, Ye S, Ye F, Chen K and Yang M 2020 Phys. Rev. Lett. 124 158001 [32] Feng F, Lei T and Zhao N 2021 Phys. Rev. E 103 022604 [33] Liu P, Li L, Ning L, Zheng N and Yang M 2023 J. Phys.: Condens. Matter 35 445102 [34] Mallory S A, Valeriani C and Cacciuto A 2014 Phys. Rev. E 90 032309 [35] Kaiser A,Wensink H H and Löwen H 2012 Phys. Rev. Lett. 108 268307 [36] Hua Y, Li K, Zhou X, He L and Zhang L 2018 Soft Matter 14 5205 [37] To K 2014 Phys. Rev. E 89 062111 [38] Maggi C, Paoluzzi M, Pellicciotta N, Lepore A, Angelani L and Di Leonardo R 2014 Phys. Rev. Lett. 113 238303 [39] Ye S, Liu P, Wei Z, Ye F, Yang M and Chen K 2020 Chin. Phys. B 29 058201 [40] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006 [41] Zhang B, Leishangthem P, Ding Y and Xu X 2021 Proc. Natl. Acad. Sci. USA 118 e2100145118 [42] Drescher K, Dunkel J, Cisneros L H, Ganguly S and Goldstein R E 2011 Proc. Natl. Acad. Sci. USA 108 10940 [43] Berke A P, Turner L, Berg H C and Lauga E 2008 Phys. Rev. Lett. 101 038102 [44] Molaei M, Barry M, Stocker R and Sheng J 2014 Phys. Rev. Lett. 113 068103 [45] Bianchi S, Saglimbeni F and Di Leonardo R 2017 Phys. Rev. X 7 011010 [46] Hernandez C J and Mason T G 2007 J. Phys. Chem. C 111 4477 [47] Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298 [48] Zheng Z and Han Y 2010 J. Chem. Phys. 133 124509 [49] Ye S, Liu P, Ye F, Chen K and Yang M 2020 Soft Matter 16 4655
Effect of passive plates on vertical instability in the EAST tokamak Liu Guang-Jun (刘广君), Wan Bao-Nian (万宝年), Qian Jin-Ping (钱金平), Sun You-Wen (孙有文), Xiao Bing-Jia (肖炳甲), Shen Biao (沈飚), Luo Zheng-Ping (罗正平), Ji Xiang (戟翔), Chen Shu-Liang (陈树亮 ). Chin. Phys. B, 2012, 21(8): 085201.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.